886
G.Y. C¸ iftc¸ i et al. / Spectrochimica Acta Part A 74 (2009) 881–886
[7] M.A. Keller, C.S. Saba, Anal. Chem. 68 (1996) 3489–3492.
[8] K. Inoue, T. Yamauchi, T. Itoh, E. Ihara, J. Inorg. Organomet. Polym. Mater. 17
(2007) 367–375.
[9] W. Vanek, Angew. Chem. Int. Ed. Engl. 8 (1969) 617–630.
[10] S.S. Krishnamurty, A.C. Sau, M. Woods, Adv. Inorg. Chem. Radiochem. 21 (1978)
41–112.
[11] C.W. Allen, in: I. Haiduc, B.D. Sowerby (Eds.), The Chemistry of Inorganic Homo-
and Hetero-Cycles, Academic Press, London, vol. 2, 1987, p. 501.
[12] C.W. Allen, J. Fire Sci. 11 (1993) 320–328.
[13] K. Moriya, T. Masuda, S. Yano, T. Suzuki, M. Kajiwara, Mol. Cryst. Liq. Cryst. 318
(2001) 267–277.
[14] K. Moriya, T. Suzuki, S. Yano, S. Miyajima, J. Phys. Chem.
7920–7927.
B 105 (2001)
[15] K. Moriya, T. Yamane, T. Suzuki, T. Masuda, H. Mizusaki, S. Yano, M. Kajiwara,
Phosp. Sulfur Silicon 177 (2002) 1427–1432.
[16] J. Barber, M. Bardaj, J. Jimnez, A. Laguna, J. Martnez, L. Serrano, I. Zaragozano, J.
Am. Chem. Soc. 127 (2005) 8994–9002.
[17] M.G. Muralidhara, N. Grover, V. Chandrasekhar, Polyhedron 12 (1993)
1509–1513.
[18] S. Besli, S.J. Coles, D.B. Davies, M.B. Hursthouse, A. Kılıc¸ , R.A. Shaw, J. Chem. Soc.
Dalton Trans. (2007) 2792–2801.
Fig. 6. The fluorescence emission spectra of 3, 4 and 5 in dichloromethane. Concen-
tration: 1 × 10−5 mol dm−3; excitation wavelength: 240 nm.
[19] N. Satish Kumar, K.C. Kumara Swamy, Polyhedron 23 (2004) 979–985.
[20] H.A. Al-Madfa, A.H. Alkubaisi, H.G. Parkers, R.A. Shaw, Heterocycles 28 (1989)
347–358.
[21] S. Bes¸ li, S.J. Coles, D.B. Davies, R.J. Eaton, A. Kılıc¸ , R.A. Shaw, Polyhedron 25
(2006) 963–974.
[22] K. Brandt, T. Kupka, J. Drozd, J.C. van de Grampel, A. Meetsma, A.P. Jekel, Inorg.
Chim. Acta 228 (1995) 187–192.
[23] S.J. Coles, D.B. Davies, R.J. Eaton, M.B. Hursthouse, A. Kılıc¸ , R.A. Shaw, G. Yenilmez
C¸ iftc¸ i, Polyhedron 25 (2006) 953–962.
[24] M.E. Amato, G.A. Carriedo, F.J. Garcia Alonso, J.L. García-Alvarez, G.M. Lombardo,
G.C. Pappalardo, J. Chem. Soc. Dalton Trans. (2002) 3047–3053.
[25] S. Begec, Heteroatom. Chem. 18 (2007) 372–375.
[26] E.W. Ainscough, A.M. Brodie, A.B. Chaplin, J.M. O’Connor, C.A. Ottor, Dalton
Trans. (2006) 1264–1266.
[27] (a) D. Dell, B.W. Fitzsimmons, R.A. Shaw, J. Chem. Soc. (1965) 4070–4073;
(b) G. Bandoli, U. Casellato, M. Gleria, A. Grassi, E. Montoneri, G.C. Pappalardo,
J. Chem. Soc. Dalton Trans. (1989) 757–760.
for compound 3, 311 and 400 nm for compound 4 and 400 nm
for compound 5 were observed. The increase of the phenolph-
thalein group on cyclotriphosphazatriene ring caused the red shift
from 311 to 400 nm in fluorescence emission of cyclotriphosp-
hazatriene compounds in DCM. Compound 5 showed a higher
fluorescence emission behaviour than that of compounds 3 and
the number of the phenolphthalein group was explained by the
non-covalent – interactions between aromatic double bonds
of phenolphthalein group. These interactions have previously
proposed for other phosphazene derivatives and that a detailed
study of eximer formation [35–39]. The phenolphthalein bridged
cyclotriphosphazatrienes (3–5) might lead to some applications
for developing of OLED materials.
[28] (a) F. Aslan, O. Halcı, M. Arslan, Heteroatom. Chem. 19 (2008) 158–162;
(b) F. Aslan, Z. Demirpence, R. Tatsiz, H. Turkmen, A.I. Ozturk, M. Arslan, Z.
Anorg. Allg. Chem. 634 (2008) 1140–1144.
[29] V. Chandrasekhar, G. Thangavelu, S. Andavan, R. Azhakar, B.M. Pandian, Tetra-
hedron Lett. 47 (2006) 8365–8368.
Acknowledgement
[30] H.J. Bolink, E. Barea, R.D. Costa, E. Coronado, S. Sudhakar, C. Zhen, A. Sellinger,
Org. Electron. 9 (2008) 155–163.
[31] S. Budavari, The Merck Index, 12th ed., Merck & Company Inc., Whitehall, NJ,
1996.
[32] (a) C. Wu, S. Bo, M. Siddiq, G. Yang, T. Chen, Macromolecules 29 (1996)
2989–2993;
The author thanks the Shin Nisso Kako Co. Ltd. for gifts of
N3P3Cl6 and Gebze Institute of Technology Research Fund for
partial support.
(b) M. Strukelj, A.S. Hay, Macromolecules 25 (1992) 4721–4729.
[33] H. Dal, Y. Süzen, Spectrochim. Acta Part A 67 (2007) 1392–1397.
[34] B. Zhang, Z. Wang, X. Zhang, Polymer 50 (2009) 817–824.
[35] M. Gleria, F. Barigelletti, S. Dellonte, S. Lora, F. Minto, P. Bortolus, Chem. Phys.
Lett. 83 (1981) 559–563.
[36] L. Flamigni, N. Camaioni, P. Bortolus, F. Minto, M. Gleria, J. Phys. Chem. 95 (1991)
971–975.
[37] M. Gleria, F. Minto, S. Lora, L. Busulini, P. Bortolus, Macromolecules 19 (1986)
References
[1] M. Gleria, R.D. Jaeger, J. Inorg. Org. Polym. 11 (2001) 1–45.
[2] H.R. Allcock, M.E. Napierala, C.G. Cameron, S.J.M. O’Connor, Macromolecules 29
(1996) 1951–1956.
[3] J.L. Sassus, M. Graffeuil, P. Castera, J.F. Labarre, Inorg. Chim. Acta 108 (1985)
23–27.
574–578.
[4] S. In, A.D. Lann, F. Oksman, E.L. Fournie, J.F. Labarre, H. Benoist, G.J. Fournie, Int.
J. Immunopharm. 14 (1992) 871–876.
[5] K. Brandt, Z. Jedlinski, Makromol. Chem. Suppl. 9 (1985) 169–174.
[6] R.E. Singler, A.J. Deome, D.A. Dunn, M.J. Bieberich, Ind. Eng. Chem., Prod. Res.
Dev. 25 (1986) 46–57.
[38] B. C¸ os¸ ut, F. Hacıveliog˘lu, M. Durmus¸ , A. Kılıc¸ , S. Yes¸ ilot, Polyhedron 28 (2009)
2510–2516.
[39] G. Marcelo, E. Saiz, F. Mendicuti, G.A. Carriedo, F.G. Alonso, J.L. García-Alvarez,
Macromolecules 39 (2006) 877–885.