2695
I. Gergelitsová et al.
Letter
Synlett
Catal. 2012, 354, 783. (d) Deng, H.-P.; Wei, Y.; Shi, M. Eur. J. Org.
Chem. 2011, 2011, 1956. (e) Wei, Y.; Shi, M. Acc. Chem. Res. 2010,
43, 1005. (f) Shi, Y.-L.; Shi, M. Adv. Synth. Catal. 2007, 349, 2129.
(17) For representative examples of thiourea–phosphine organocat-
alysts derived from cyclohexane motif, see: (a) Yuan, K.; Song,
H.-L.; Hu, Y.; Fang, J.-F.; Wu, X.-Y. Tetrahedron: Asymmetry 2010,
21, 903. (b) Mita, T.; Jacobsen, E. N. Synlett 2009, 1680.
(c) Yuang, K.; Song, H.-L.; Hu, Y.; Wu, X.-Y. Tetrahedron 2009, 65,
8185. (d) Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130,
5660. (e) Yuan, K.; Zang, L.; Song, H.-L.; Hu, Y.; Wu, X.-Y. Tetra-
hedron Lett. 2008, 49, 6262.
2833, 2902, 2929, 2953, 3052, 3072, 3306 cm−1
.
1H NMR (600
MHz, CDCl3): δH = 7.55–7.49 (m, 2 H), 7.48–7.41 (m, 2 H), 7.37–
7.27 (m, 6 H), 7.14 (br s, 1 H), 6.24 (br s, 1 H), 4.46 (br s, 1 H),
4.38 (br s, 1 H), 3.63 (s, 3 H), 3.60 (s, 3 H), 3.58 (dd, J = 14.3, 3.7
Hz, 1 H), 3.50 (s, 3 H), 3.48 (dd, J = 10.5, 5.5 Hz, 1 H), 3.33 (ddd,
J = 9.7, 5.2, 1.9 Hz, 1 H), 3.26 (s, 3 H), 3.23–3.11 (m, 3 H), 2.39–
2.26 (m, 2 H), 2.16 (dq, J = 13.3, 6.8 Hz, 1 H), 0.89 (d, J = 6.9 Hz, 3
H), 0.87 (d, J = 6.8 Hz, 3 H). 13C{1H} NMR (151 MHz, CDCl3): δC =
183.7 (s), 138.5 (d, J = 15.6 Hz), 138.3 (d, J = 12.0 Hz), 133.0 (s),
132.9 (s), 128.6 (s), 128.5–128.3 (m), 87.1 (s), 84.1 (s), 81.9 (s),
79.5 (s), 76.4 (s), 70.9 (s), 60.8 (s), 60.7 (s), 60.5 (s), 59.0 (s), 58.0
(d, J = 14.0 Hz), 31.4 (d, J = 6.5 Hz), 31.2 (d, J = 13.6 Hz), 18.6 (s),
17.5 (s). 31P{1H} NMR (121 MHz, CDCl3): δP −24.4. HRMS
(ESI-TOF): m/z [M + H]+ calcd for C28H42N2O5PS: 549.2546;
found: 549.2546.
(18) Yang, W.; Sha, F.; Zhang, X.; Yuan, K.; Wu, X. Chin. J. Chem. 2012,
30, 2652.
(19) For selected examples of enantioselective MBH reactions cata-
lyzed by chiral phosphines, see: (a) Wei, Y.; Shi, M. Chem. Asian
J. 2014, 9, 2720. (b) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659.
(c) Zhong, F.; Wang, Y.; Han, X.; Huang, K.-W.; Lu, Y. Org. Lett.
2011, 13, 1310. (d) Han, X.; Wang, Y.; Zhong, F.; Lu, Y. Org.
Biomol. Chem. 2011, 9, 6734. (e) Song, H.-L.; Yuan, K.; Wu, X.-Y.
Chem. Commun. 2011, 47, 1012. (f) Lei, Z.-Y.; Liu, X.-G.; Shi, M.;
Zhao, M. Tetrahedron: Asymmetry 2008, 19, 2058. (g) Shi, M.;
Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790.
(h) Hayase, T.; Shibata, T.; Soai, K.; Wakatsuki, Y. Chem.
Commun. 1998, 1271.
(20) For the preparation of 2b, see: (a) Čaplar, V.; Žinić, M.; Pozzo, J.-
L.; Fages, F.; Mieden-Gundert, G.; Vögtle, F. Eur. J. Org. Chem.
2004, 2004, 4048. (b) Douat-Casassus, C.; Pulka, K.; Claudon, P.;
Guichard, G. Org. Lett. 2012, 14, 3130. (c) Wessig, P.; Schwarz, J.
Synlett 1997, 8, 893. (d) Kawamura, K.; Fukuzawa, H.; Hayashi,
M. Org. Lett. 2008, 10, 3509. (e) Anderson, J. C.; Cubbon, R. J.;
Harling, J. D. Tetrahedron: Asymmetry 2001, 12, 923.
(24) N-[({(1S)-1-[(Diphenylphosphino)methyl]-2-methylpropyl}-
amino)carbonyl]-2,3,4,6-tetra-O-methyl-β-D-glucopyrano-
sylamine (6a); Typical Procedure for the Synthesis of the
Urea Catalysts
Amine 4a (100.0 mg, 0.43 mmol) and triphosgene (126.2 mg,
0.43 mmol) were added to a mixture of CH2Cl2 (3 mL) and sat.
aq NaHCO3 (1 mL), and the mixture was stirred at r.t. for 2 h. The
resulting mixture was extracted with CH2Cl2 (3 × 10 mL). The
combined organic layers were dried (MgSO4) and concentrated,
and the residue was dissolved in CH2Cl2 (1 mL). A solution of
aminophosphine 2c (86.8 mg, 0.32 mmol) in CH2Cl2 (1 mL) was
added dropwise, and the mixture was stirred at r.t. for 18 h. The
resulting mixture was concentrated, and the residue was puri-
fied by flash column chromatography [silica gel, hexane–EtOAc
(1:1)]. The product was crystallized (CHCl3) to give a white
glacial solid; yield: 124.0 mg (79%); mp 137–138 °C;
[α]D25 +22.6 (c 0.27, CHCl3). IR (KBr, acetone): 510, 701, 740,
934, 952, 988, 1027, 1069, 1099, 1144, 1165, 1186, 1242, 1263,
1308, 1368, 1389, 1416, 1437, 1464, 1482, 1565, 1640, 1811,
1888, 1957, 2830, 2893, 2905, 2932, 2956, 3046, 3072, 3309
(21) For the preparation of 2c and 2c′, see ref. 20d and: Nakamura,
M.; Hatakeyama, T.; Hara, K.; Nakamura, E. J. Am. Chem. Soc.
2003, 125, 6362.
(22) (a) Tsuji, M.; Yamazaki, H. EP 1041080, 2000. For the prepara-
tion of 3b, see: (b) Kühne, M.; Györgydeák, Z.; Lindhorst, T. K.
Synthesis 2006. 949 For the preparation of 3a and 3c, see:
(c) Benoist, E.; Coulais, Y.; Almant, M.; Kovensky, J.; Moreau, V.;
Lesur, D.; Artigau, M.; Picard, C.; Galaup, C.; Gouin, S. G. Carbo-
hydr. Res. 2011, 346, 26. (d) Praly, J.-P.; Senni, D.; Faure, R.;
Descotes, G. Tetrahedron 1995, 51, 1697. (e) André, S.;
Grandjean, C.; Gautier, F.-M.; Bernardi, S.; Sansone, F.; Gabius,
H.-J.; Ungaro, R. Chem. Commun. 2011, 47, 6126. (f) Kuijpers, B.
H. M.; Groothuys, S.; Soede, A. C.; Laverman, P.; Boerman, O. C.;
van Delft, F. L.; Rutjes, F. P. J. T. Bioconjugate Chem. 2007, 18,
1847.
1
cm−1. H NMR (600 MHz, CDCl3): δH = 7.47 (tt, J = 5.1, 2.0 Hz, 2
H), 7.41 (tt, J = 6.0, 2.3 Hz, 2 H), 7.36–7.27 (m, 6 H), 4.98 (d,
J = 6.9 Hz, 1 H), 4.82 (d, J = 7.0 Hz, 1 H), 4.61 (t, J = 8.0 Hz, 1 H),
3.75 (br s, 1 H), 3.64 (s, 3 H), 3.60 (dd, J = 10.4, 2.0 Hz, 1 H), 3.54
(s, 3 H), 3.53–3.50 (m, 1 H), 3.52 (s, 3 H), 3.31 (s, 3 H), 3.24 (t,
J = 8.9 Hz, 1 H), 3.21–3.15 (m, 1 H), 2.98 (t, J = 8.9 Hz, 1 H), 2.23
(d, J = 7.2 Hz, 2 H), 2.02–1.94 (m, 1 H), 0.85 (d, J = 1.1 Hz, 3 H),
0.84 (d, J = 1.2 Hz, 3 H). 13C{1H} NMR (151 MHz, CDCl3): δC
=
157.0 (s), 138.7 (d, J = 12.5 Hz), 132.9 (d, J = 19.3 Hz), 132.8 (d,
J = 19.1 Hz), 128.7–128.4 (m), 87.1 (s), 82.7 (s), 82.0 (s), 79.4 (s),
75.8 (s), 70.9 (s), 60.7 (s), 60.4 (s), 60.2 (s), 59.1 (s), 52.9 (d,
J = 14.2 Hz), 32.2 (s), 32.05 (d, J = 7.8 Hz), 18.9 (s), 17.3 (s).
31P{1H} NMR (121 MHz, CDCl3): δP = −23.7. HRMS (ESI-TOF): m/z
[M + H]+ calcd for C28H42N2O6P: 533.2775; found: 533.2776.
(25) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am.
Chem. Soc. 1999, 121, 10219.
(23) N-[({(1S)-1-[(Diphenylphosphino)methyl]-2-methylpropyl}-
amino)carbonothioyl]-2,3,4,6-tetra-O-methyl-β-D-glucopy-
ranosylamine (5c); Typical Procedure for the Synthesis of the
Thiourea Catalysts
Isothiocyanate 3a (1.16 g, 4.20 mmol) was dissolved in dry
CH2Cl2 (10 mL) under argon in a dry Schlenk flask. A solution of
aminophosphine 2c (1.14 g, 4.20 mmol) in dry CH2Cl2 (10 mL)
was slowly added from a syringe, and the mixture was stirred at
r.t. for 5 h. The solvent was removed under reduced pressure,
and the residue was purified by flash column chromatography
[silica gel, hexane–EtOAc (4:1 to 1:1)] to give a colorless viscous
oil that was freeze-dried to give a white solid; yield: 1.65 g
(72%); [α]D25 −26.1 (c 0.35, CHCl3). IR (KBr): 507, 698, 740, 937,
985, 1030, 1096, 1165, 1186, 1251, 1308, 1347, 1368, 1389,
1431, 1455, 1479, 1541, 1550, 1616, 1739, 1814, 1885, 1960,
(26) Methyl 2-[(R)-Hydroxy(4-nitrophenyl)methyl]acrylate (12a);
Typical Procedure for the Asymmetric MBH Reaction
Acrylate 11a (43.0 mg, 0.50 mmol) was added to a solution of
organocatalyst 5c (5.5 mg, 0.01 mmol) in t-BuOMe (1 mL) at r.t.,
and the solution was stirred for 15 min. Aldehyde 10a (15.1 mg,
0.10 mmol) was added, and mixture was stirred at 25 °C for 1 d
(Table 3). The solvent was removed under reduced pressure, and
the residue was purified by flash column chromatography
[silica gel, hexane–EtOAc (4:1)] to give a yellow solid; yield:
18.1 mg (76%); [α]D25 −57.3 (c 0.52, MeOH, 86% ee). 1H NMR
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2690–2696