N.M. Aghatabay et al. / European Journal of Medicinal Chemistry 44 (2009) 4681–4689
4689
[8] B. Blanco, M. Moreno-Manas, R. Pleixats, M. Mehdi, C. Reye, J. Mol. Catal. A
Chem. 269 (2007) 204.
[9] N. Kuhnert, D. Marsh, D.C. Nicolau, Tetrahedron: Asymmetry 18 (2007) 1648.
[10] V.E. Semenov, A.D. Voloshina, E.M. Toroptzova, N.V. Kulik, V.V. Zobov,
R.K. Giniyatullin, A.S. Mikhailov, A.E. Nikolaev, V.D. Akamsin, V.S. Reznik, Eur. J.
Med. Chem. 41 (2006) 1093.
[11] P. Rajakumar, M.G. Swaroop, S. Jayavelu, K. Murugesan, Tetrahedron 62 (2006)
12041.
[12] N.M. Aghatabay, M. Mahmiani, H. Çevik, B. Dulger, Eur. J. Med. Chem. (2008).
doi:10.1016/j.ejmech.
[13] F. Marques, L. Gano, M.P. Campello, S. Lacerda, I. Santos, L.M.P. Lima, J. Costa,
P. Antunes, R. Delgado, J. Inorg. Biochem. 100 (2006) 270.
[14] M. Tabata, A.K. Sarker, E. Nyarko, J. Inorg. Biochem. 94 (2003) 50.
[15] S. Chandra, L.K. Gupta, Spectrochim. Acta, Part A 60 (2004) 1563.
[16] M.M.A. Boojar, A. Shockravi, Bioorg. Med. Chem. 15 (2007) 3437.
[17] Y. Liu, Tetrahedron Lett. 48 (2007) 3871.
against the ligands. In overall, these compounds seem to have
a very low toxic effect against tested cell lines.
3.3.3. Detection of apoptosis
To analyze the effects of the compounds on DNA of the cell lines,
we performed nuclear Hoechst staining and DNA fragmentation
assays that give clue about the apoptotic cell death. Following
Hoechst staining under inverted fluorescence microscope, the
nucleus of apoptotic cells can be differentiated from the nucleus of
non-apoptotic cells due to DNA damage. We observed that the
control and the treated cells had the same nuclear appearance
following Hoechst staining (Figs. 8 and 9).
DNA fragmentation which is another indication for apoptosis
was tested following treatment of the cell lines with compounds.
DNA of the cell lines was intact suggesting that these ligands do not
induce DNA fragmentation. The experiment did not indicate any
apoptotic cell death and therefore no further experiments were
performed (Fig. 10).
[18] M. Salavati-Niasari, F. Davar, Polyhedron 25 (2006) 2127.
[19] M. Salavati-Niasari, F. Davar, Inorg. Chem. Commun. 9 (2006) 175.
[20] J.D. Chartres, N.S. Davies, L.F. Lindoy, G.V. Meehan, G. Wei, Inorg. Chem.
Commun. 9 (2006) 751.
[21] J. Seo, M.R. Song, K.F. Sultana, H.J. Kim, J. Kim, S.S. Lee, J. Mol. Struct. 827 (2007)
201.
[22] S. Chandra, L.K. Gupta, Spectrochim. Acta A 61 (2005) 1181.
[23] H. Khanmohammadi, S. Amani, H. Lang, T. Ru¨ effer, Inorg. Chim. Acta 360
(2007) 579.
[24] H. Irving, P.J.R. Williams, J. Am. Chem. Soc. (1953) 3192.
[25] R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3353.
3.3.4. DNA binding
Electrostatic or direct hydrogen bonding of the macrocyclic
ligands with DNA is expected to bring about marked changes in its
electronic spectrum. However, no marked changes have been
observed in the electronic spectrum of the DNA with the addition of
the ligands, ruling out the possibility of their direct binding to DNA.
With the addition of ligands, the DNA systems exhibit only small
changes in their electronic spectrum. Such a small change may arise
with groove binding, leading to small perturbations. This hyper-
chromism in the absorption intensity may probably be due to the
dissociation of ligand aggregates [52] or due to its external contact
(surface binding) with the ligands [53]. Rather small changes in
UV–vis spectra did not allow calculation of binding constants
(log Ks) for any of the ligands.
[26] R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 751.
[27] J. Aaseth, D. Jacobsen, O. Anderson, E. Wickstrom, Analyst 120 (1995) 853.
[28] M.D. Aleo, M.L. Taub, P.J. Kostyniak, Toxicol. Appl. Pharmacol. 112 (1992) 310.
[29] T. Endo, M. Sakata, Pharmacol. Toxicol. 76 (1995) 190.
[30] J.P.K. Rooney, Rev. Toxicol. 234 (2007) 145.
[31] M. Vahter, Toxicol. Lett. 169 (2007) 91.
[32] P. Rajakumar, A.M.A. Rasheed, A.I. Rabia, D. Chamundeeswari, Bioorg. Med.
Chem. Lett. 16 (2006) 6019.
[33] A.S. Girgis, Eur. J. Med. Chem. 43 (2008) 2116.
[34] A.A. Mohamed, G.S. Masaret, A.H.M. Elwahy, Tetrahedron 63 (2007) 4000.
[35] O.V. Kulikof, V.I. Pavlovsky, S.A. Andronati, Chem. Heterocycl. Comp. 41 (2005)
1447.
[36] P. Rajakumar, K. Sekar, V. Shanmugaiah, N. Mathivanan, Eur. J. Med. Chem. 44
(2009) 3040.
[37] D.S. Pilch, C.M. Barbieri, S.G. Rzuczek, E.J. La Voie, J.E. Rice, Biochmie 90 (2008)
1233.
[38] Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved
Standard NCCLS Publication M2-A5, Villanova, PA, USA, 1993, pp. 1–32.
[39] C.H. Collins, P.M. Lyre, J.M. Grange, Microbiological Methods, sixth ed. But-
terworth Co. Ltd, London, 1989.
Acknowledgement
[40] R.N. Jones, A.L. Barry, T.L. Gaven, J.A. Washington, Manual of Clinical Micro-
biology, in: E.H. Lennette, A. Balows, W.J. Shadomy (Eds.), fourth ed. American
Society for Microbiology, Washington, DC, 1984, pp. 972–977.
[41] T. Mosmann, J. Immunol. Methods 65 (1983) 55.
[42] S. Kotamraju, C.L. Williams, B. Kalyanaraman, Cancer Res. 67 (2007) 8973.
[43] M.B. Irmak, G. Ince, M. Ozturk, R.C. Atalay, Cancer Res. 63 (2003) 6707.
[44] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds Part B (1997) pp. 12, 54–55.
We would like to extend our gratitude to the Fatih University
Scientific Research Centre for their financial support under project-
P50020702.
References
[45] H. Gu¨ nzer, H.-U. Gremlich, IR Spectroscopy an Introduction, Wiley-VCH Verlag
GmbH, 69469 Weinheim, Germany, 2002, pp. 224–226.
[46] S. Chandr5fa, L.K. Gupta, Spectrochim. Acta, Part A 62 (2005) 1102.
[1] T.W. Hambley, L.F. Lindoy, J.R. Reimers, P. Turner, W. Wei, A.N.W. Cooper, J.
Chem. Soc., Dalton Trans. (2001) 614.
[2] R.R. Fenton, R. Gauci, P.C. Junk, L.F. Lindoy, R.C. Luckay, G.V. Meehan, J.R. Price,
P. Turner, G. Wei, J. Chem. Soc., Dalton Trans. (2002) 2185.
[3] S. Chandra, R. Kumar, Spectrochim. Acta, Part A 61 (2005) 437.
[4] A. Freiria, R. Bastida, L. Valencia, A. Macias, C. Lodeiro, H. Adams, Inorg. Chim.
Acta 359 (2006) 2383.
[47] J. Weidlein, U. Muller, K. Dehnicke, Schwingungsfrequenzen
gruppenelemente, Germany, 1981 p. 146.
I Haupt-
[48] J.B. Lambert, H.F. Shurvell, D.A. Lightner, R.G. Cooks, Organic Structural
Spectroscopy, Prentice-Hall, Inc., 1998, pp. 198–199.
[49] W. Kemp, Nmr In Cheistry, A Multinuclear Introduction (1986) pp. 211.
[50] Spectra Databases for Organic Compounds-SDBS (aist.go.jp).
[51] W. Kemp, Nmr In Cheistry, A Multinuclear Introduction (1986) pp. 221.
[52] R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B. Unni Nai, Biochim.
Biophys. Acta 1475 (2000) 157.
[5] N.M. Agh-atabay, A. Neshat, T. Karabiyik, M. Somer, D. Haciu, B. Dulger, Eur. J.
Med. Chem. 42 (2007) 205.
[6] A.D. Bond, A. Fleming, F. Kelleher, J. McGinley, V. Prajapati, S. Skovsgaard,
Tetrahedron 63 (2007) 6835.
[7] R.T. Watson, C. Hu, D.G. VanDerveer, D.T. Musashe, P.S. Wagenknecht, Inorg.
Chem. Commun. 9 (2006) 180.
[53] R. Tamilarasan, D.R. McMillin, Inorg. Chem. 29 (1990) 2798.