ORGANIC
LETTERS
2009
Vol. 11, No. 23
5478-5481
Modular Construction of 2-Substituted
Benzo[b]furans from 1,2-Dichlorovinyl
Ethers
Laina M. Geary and Philip G. Hultin*
Department of Chemistry, UniVersity of Manitoba, Winnipeg,
Manitoba, Canada R3T 2N2
Received October 7, 2009
ABSTRACT
(E)-1,2-Dichlorovinyl ethers and amides are easily accessible from trichloroethylene via nucleophilic addition across in situ synthesized
dichloroacetylene. A one-pot, sequential Suzuki-Miyaura coupling/intramolecular direct arylation between dichlorovinyl ethers and organoboronic
acids provides easy access to a variety of benzofurans in only two steps from inexpensive commercially available compounds. The method
is extendable to the preparation of indoles from the analogous dichlorovinyl amides.
Benzo[b]furans and indoles are common motifs in natural
products, agrochemicals, and pharmaceuticals. The indole
structure is widely regarded as “privileged” in drug develop-
ment,1 while the benzo[b]furan nucleus shows promise of
attaining this status.2 Methods for the synthesis of benzo[b]-
furans and indoles have been reviewed,3 but substantial
activity continues because a broadly applicable strategy
remains elusive.
to a general strategy, but these methods suffer from either
regioselectivity issues or restrictive functional group require-
ments.
1,1-Dichloroalkenes undergo stepwise Pd-catalyzed reac-
tions with various organometallic reagents.7 Organ8 and
others9 have explored the use of a variety of 1,2-dihalo and
1,1,2-trihaloalkene derivatives including trichloroethylene
(TCE) as synthetic “linchpins” for convergent synthesis. We
thought that 1-aryloxy-1,2-dichloroethylenes (readily ob-
tained by addition of phenols to TCE10) might be regiose-
lectively functionalized by sequential cross-coupling and aryl
Direct routes from simple phenols and anilines could
minimize costs and reduce the number of manipulations prior
to the key assembly of the heterocycle nucleus. Recent work
by Glorius,4 Jung,5 and Zhao,6 among others, points the way
(7) (a) Negishi, E.-i.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.;
Hattori, H. Acc. Chem. Res. 2008, 41, 1474. (b) Tan, Z.; Negishi, E.-i.
Angew. Chem., Int. Ed. 2006, 45, 762. (c) Liron, F.; Fosse, C.; Pernolet,
A.; Roulland, E. J. Org. Chem. 2007, 72, 2220.
(1) de Sa Alves, F. R.; Barreiro, E. J.; Fraga, C. A. M. Mini ReV. Med.
Chem. 2009, 9, 782.
(2) De Luca, L.; Nieddu, G.; Porcheddu, A.; Giacomelli, G. Curr. Med.
Chem. 2009, 16, 1.
(8) (a) Organ, M. G.; Ghasemi, H.; Valente, C. Tetrahedron 2004, 60,
9453. (b) Ghasemi, H.; Antunes, L. M.; Organ, M. G. Org. Lett. 2004, 6,
2913. (c) Organ, M. G.; Cooper, J. T.; Rogers, L. R.; Soleymanzadeh, F.;
Paul, T. J. Org. Chem. 2000, 65, 7959.
(3) (a) Cacchi, S.; Fabrizi, G.; Goggiomani, A. Heterocycles 2002, 56,
613. (b) Hou, X.-L.; Yang, Z.; Yeung, K.-S.; Wong, H. N. C. Prog.
Heterocycl. Chem. 2007, 18, 187. (c) Cacchi, S.; Fabrizi, G.; Goggiamani,
A. Curr. Org. Chem. 2006, 10, 1423. (d) Humphrey, G. R.; Kuethe, J. T.
Chem. ReV. 2006, 106, 2875. (e) Krueger, K.; Tillack, A.; Beller, M. AdV.
Synth. Catal. 2008, 350, 2153. (f) Patil, S. A.; Patil, R.; Miller, D. D. Curr.
Med. Chem. 2009, 16, 2531.
(9) (a) Pellegrini, S.; Castanet, Y.; Mortreux, A. J. Mol. Catal. A: Chem.
2007, 277, 21. (b) Anthony, J.; Boldi, A. M.; Rubin, Y.; Hobi, M.; Gramlich,
V.; Knobler, C. B.; Seiler, P.; Diederich, F. HelV. Chim. Acta 1995, 78, 13.
(c) Schmidt, B.; Ehlert, D. K.; Braun, H. A. Tetrahedron Lett. 2004, 45,
1751.
(4) Wuertz, S.; Rakshit, S.; Neumann, J. J.; Droege, T.; Glorius, F.
Angew. Chem., Int. Ed. 2008, 47, 7230.
(10) (a) Darses, B.; Milet, A.; Philouze, C.; Greene, A. E.; Poisson,
J.-F. Org. Lett. 2008, 10, 4445. (b) Kann, N.; Bernardes, V.; Greene, A. E.
Org. Synth. 1997, 74, 13. (c) Moyano, A.; Charbonnier, F.; Greene, A. E.
J. Org. Chem. 1987, 52, 2919.
(5) Jung, M. E.; Perez, F. Org. Lett. 2009, 11, 2165.
(6) Yu, W.; Du, Y.; Zhao, K. Org. Lett. 2009, 11, 2417.
10.1021/ol902307m CCC: $xxxx
Published on Web 11/11/2009
2009 American Chemical Society