Y. Cai et al. / Carbohydrate Research 344 (2009) 2120–2126
2125
J4,5a = 3.2 Hz, J4,5b = 9.9 Hz, H-4), 4.48 (dddd, 1H, J2,3 = 8.2 Hz, H-2),
4.29 (dd, 1H, J1a,1b = 11.7 Hz, J1a,2 = 5.0 Hz, H-1a), 4.01 (dd, 1H,
J1b,2 = 3.1 Hz, H-1b), 2.08 (s, 3H, COCH3), 2.05 (s, 6H, COCH3), 2.03
(s, 3H, NHCOCH3), 1.55–1.64 (m, 2H, alkyl CH2), 1.20–1.35 (m,
24H, alkyl CH2), 0.88 (t, 3H, J = 6.7 Hz, alkyl CH3); 13C NMR
(125 MHz, CDCl3): d 171.1, 170.8, 170.0, 169.7, 73.0, 72.1, 62.8,
47.7, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.3, 28.2, 25.5, 23.3,
22.7, 21.0, 20.7, 20.7, 14.1; HRESIMS: calcd for C26H47NO7Na
(M+Na+) m/z 508.3245; found, m/z 508.3247.
second-generation catalyst (20%, 41.4 mg) was added in four por-
tions (protocol B) under reflux. The reaction was continued for
18 h under gentle reflux. After concentration, the residue was puri-
fied by chromatography on silica using 4:1 hexane–EtOAc as eluent
to afford the target product 16 as a white amorphous solid (85 mg,
77%, E/Z = ꢀ12:1): Rf 0.34 (2:1 hexane–EtOAc). 1H NMR (600 MHz,
CDCl3): d 5.83 (dt, 1H, J6,7 = 6.8 Hz, H-6), 5.50 (dd, 1H, J5,6 = 15.3 Hz,
H-5), 4.93 (s, br, 1H, NH), 4.65 (dd, 1H, J4,5 = 7.2 Hz, H-4), 4.19 (dd,
1H, J2,3 = J3,4 = 6.3 Hz, H-3), 3.86 (dd, 1H, J1a,1b = 11.0 Hz, J1a,2
=
3.0 Hz, H1a), 3.70 (dd, 2H, J = 9.3 Hz, J = 3.2 Hz, H-2 and H1b),
2.06 (t, 2H, J = 7.0 Hz, @CHCH2), 1.49 (s, 3H, C(CH3)2), 1.36 (s, 3H,
C(CH3)2), 1.44 (s, 9H, C(CH3)3), 1.20–1.40 (m, 20H, alkane CH2),
0.88 (t, 3H, J = 6.9 Hz, CH3); 13C NMR (125 MHz, CDCl3): d 155.4,
136.9, 124.2, 108.5, 78.9, 78.7, 63.5, 51.6, 32.5, 31.9, 29.7, 29.6,
29.6, 29.6, 29.5, 29.5, 29.3, 29.3, 29.0, 28.4, 27.4, 25.0, 22.7, 14.1;
HRESIMS: calcd for C26H49NO5Na (M+Na+) m/z 478.3503; found,
m/z 478.3507.
3.12. (2S,3S,4R,5E)-2-Acetamido-3,4-di-O-benzoyloctadec-5-
ene-1,3,4-triol (12)
To a solution of compound 11 (50 mg, 0.126 mmol) and 1-
tetradecene (0.16 mL, 0.63 mmol) in dry CH2Cl2 (5 mL), Grubbs’
second-generation catalyst (20%, 26.7 mg) was added in four por-
tions (protocol B) under reflux. The reaction was continued under
gentle reflux for 18 h (TLC showed that almost all starting material
was consumed). Concentration and chromatography of the residue
on silica gel using 1:5 hexane–EtOAc as eluent gave the target
3.15. (2S,3S,4R,5E)-3,4-O-Isopropylidene-2-trifluoroacetamido-
octadec-5-ene-1,3,4-triol (18)
product 12 as
a white amorphous solid (65 mg, 91%, E/
Z = ꢀ14:1): Rf 0.48 (1:5 hexane–EtOAc). 1H NMR (600 MHz, CDCl3):
d 8.07 (d, 2H, J = 7.2 Hz, ArH), 7.96 (d, 2H, J = 10.8 Hz, ArH), 7.64 (t,
1H, J = 7.4 Hz, ArH), 7.48–7.54 (m, 3H, ArH), 7.38 (t, 2H, J = 7.7 Hz,
ArH), 6.30 (d, 1H, JNH,H-2 = 9.2 Hz, NH), 6.03 (ddd, 1H, J5,6 = 14.3 Hz,
J6,7 = 6.9 Hz, 7.4 Hz, H-6), 5.74–5.82 (m, 2H, H-5 and H-4), 5.41 (dd,
1H, J = 9.1 Hz, 2.5 Hz, H-3), 4.39 (m, 1H, H-2), 3.69 (dd, 1H,
J1a,1b = 12.3 Hz, J1a,2 = 2,5 Hz, H-1a), 3.64 (dd, 1H, J1b,2 = 2.9 Hz, H-
1b), 2.15 (q, 2H, J = 7.2 Hz, H-7 or @CHCH2), 2.1 (s, 3H, NHCOCH3),
1.38–1.44 (m, 2H, alkane CH2), 1.20–1.32 (m, 18H, alkane CH2),
0.88 (t, 3H, J = 7.1 Hz, alkyl CH3); 13C NMR (125 MHz, CDCl3): d
170.0, 167.2, 165.5, 138.6, 133.9, 133.1, 130.0, 129.9, 129.7,
129.7, 129.0, 128.7, 128.6, 128.4, 122.0, 61.4, 50.3, 32.6, 31.9,
29.7, 29.6, 29.6, 29.4, 29.3, 29.3, 29.2, 28.9, 23.5, 22.7, 14.1; HRE-
SIMS: calcd for C34H47NO6Na (M+Na+) m/z 588.3296; found, m/z
588.3297.
To a solution of compound 17 (40 mg, 0.14 mmol) and 1-
tetradecene (0.18 mL, 0.7 mmol) in dry CH2Cl2 (5 mL), Grubbs’ sec-
ond-generation catalyst (20%, 23.7 mg) was added in four portions
(protocol B) under reflux. The reaction was continued for 18 h un-
der gentle reflux. Concentration, followed by chromatography of
the residue on silica gel (4:1 hexane–EtOAc), afforded the target
product 18 as a white amorphous solid (53 mg, 83%): Rf = 0.33
(2:1 hexane–EtOAc);
[
a]
D
À4.06 (c 1.1, CHCl3); 1H NMR
(400 MHz, CDCl3): d 6.79 (d, 1H, JNH,H-2 = 8.2 Hz, NH), 5.85 (dt,
1H, J6,7 = 6.7 Hz, H-6), 5.44 (dd, 1H, J5,6 = 15.3 Hz, H-5), 4.70 (dd,
1H, J4,5 = 7.3 Hz, H-4), 4.27 (dd, 1H, J3,4 = 6.5 Hz, H-3), 4.09 (ddd,
1H, J2,3 = 6.0 Hz, H-2), 4.00 (dd, J1a,1b = 11.5 Hz, J1a,2 = 2.7 Hz, H-
1a), 3.70 (dd, 1H, J1b,2 = 3.4 Hz, H-1b), 2.04 (q, 2H, J = 7.1 Hz,
@CCH2), 1.51 (s, 3H, C(CH3)2), 1.38 (s, 3H, C(CH3)2), 1.20–1.40 (m,
20H, alkane CH2), 0.88 (t, 3H, J = 6.8 Hz, alkyl CH3); 13C NMR
(125 MHz, CDCl3): d 156.5, 137.8, 123.3, 115.6, 108.9, 78.6, 77.7,
62.0, 50.8, 32.3, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.3, 28.8, 27.3,
24.8, 22.7, 14.1; HRESIMS: calcd for C23H40F3NO4Na (M+Na+) m/z
474.2802; found, m/z 474.2804. Anal. Calcd for C23H40F3NO4: C,
61.18; H, 8.93; N, 3.10. Found: C, 61.42; H, 8.72; N, 3.28.
3.13. (2S,3S,4R,5E)-2-Acetamido-3,4-O-isopropylideneoctadec-
5-ene-1,3,4-triol (14)
To a solution of compound 13 (60 mg, 0.26 mmol) and 1-
tetradecene (0.33 mL, 1.3 mmol) in dry CH2Cl2 (9 mL), Grubbs’ sec-
ond-generation catalyst (20%, 44 mg) was added in four portions
(protocol B) under reflux. The reaction was continued for 18 h un-
der gentle reflux (TLC showed that almost all starting material had
disappeared). Concentration, followed by chromatography of the
residue on silica gel using 1:5 hexane–EtOAc as eluent provided
the target product 14 as a white amorphous solid (85 mg, 82%, E/
Z = ꢀ16:1): Rf 0.22 (1:5 hexane–EtOAc). 1H NMR (500 MHz, CDCl3):
d 5.96 (d, 1H, JNH,H-2 = 8.2 Hz, NH), 5.84 (dt, 1H, J6,7 = 6.8 Hz, H-6),
5.50 (ddd, 1H, J5,6 = 15.3 Hz, H-5), 4.67 (dd, 1H, J4,5 = 7.3 Hz, H-4),
4.24 (dd, 1H, J3,4 = 6.0 Hz, H-3), 4.03 (dddd, 1H, J2,3 = 6.3 Hz, H-2),
3.90 (dd, 1H, J1a,1b = 11.5 Hz, J1a,2 = 3.5 Hz, H-1a) 3.68 (dd, 1H,
J1b,2 = 3.5 Hz, H-1b), 2.02–2.08 (m, 2H, H-7 or @CHCH2), 1.98 (s,
3H, NHCOCH3), 1.50 (s, 3H, C(CH3)2), 1.36 (s, 3H, C(CH3)2), 1.20–
1.40 (m, 20H, alkane CH2), 0.88 (t, 3H, J = 6.8 Hz, alkyl CH3); 13C
NMR (125 MHz, CDCl3): d 169.8 (C@O), 139.1, 124.2, 108.5, 78.8,
63.1, 50.7, 32.4, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.3, 29.0,
27.3, 24.8, 23.4, 22.7, 14.1; HRESIMS: calcd for C23H43NO4Na
(M+Na+) m/z 420.3084; found, m/z 420.3085.
Acknowledgments
Financial support was provided by research grants to D.R. Bun-
dle from the Natural Science and Engineering Research Council
(NSERC) and the University of Alberta.
Supplementary data
Supplementary data associated with this article can be found, in
References
1. Merrill, A. H.; Sweeley, C. C. In Biochemistry of Lipids, Lipoproteins and Membranes;
Vance, D. E., Vance, J., Eds.; Elsevier: Amsterdam, 1996; pp 309–339.
2. Holst, O., 1st ed.. In Glycoscience: Chemistry and Chemical Biology; Fraser-Reid,
B., Tatsuta, K., Thiem, J., Eds.; Springer: New York, 2001; Vol. 3, pp 2083–2106.
3. (a) Shier, W. T.; Shier, A. C. J. Toxicol.-Toxin Rev. 2000, 19, 189–246; (b) Hirsch,
S.; Kashman, Y. Tetrahedron 1989, 45, 3897–3906.
4. Dickson, R. C.; Nagiec, E. E.; Skrzypek, M.; Tillman, P.; Wells, G. B.; Lester, R. L. J.
Biol. Chem. 1997, 272, 30196–30200.
5. (a) Sharif, S.; Arreaza, G. A.; Zucker, P.; Mi, Q.-S.; Sondhi, J.; Naidenko, O. V.;
Kronenberg, M.; Koezuka, Y.; Delovitch, T. L. Nat. Med. 2001, 7, 1057–1062; (b)
Luc Van Kaer Nat. Rev. Immunol. 2004, 5, 31–42.
3.14. (2S,3S,4R,5E)-2-N-(tert-Butoxycarbonyl)amino-3,4-O-
isopropylideneoctadec-5-ene-1,3,4-triol (16)
6. (a) Natori, T.; Yasuhiko, K.; Higa, T. Tetrahedron Lett. 1993, 34, 5591–5592; (b)
Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Tetrahedron 1994, 50, 2771–
2784.
To a solution of compound 15 (70 mg, 0.244 mmol) and 1-
tetradecene (0.32 mL, 12.6 mmol) in dry CH2Cl2 (10 mL), Grubbs’