Parthasarathy and Cheng
JOCArticle
of these reactions, a carbon-halogen moiety is used to
generate the reactive species. If an unreactive C-H bond
could participate in such a reaction, the overall transforma-
tion would fit well with the principles of green chemistry
since the use of a halogen would be avoided and less organic
waste would be produced.
assisted strategy.15 In the presence of a rhodium catalyst,
an aromatic ketimine reacted with an alkyne, and subsequent
intramolecular electrocyclization led to an isoquinoline com-
pound. However, the reaction was complicated by the for-
mation of two different isoquinoline derivatives (eq 1).
Recently, Ellman et al. reported the synthesis of pyridines
from imines and alkynes via C-H bond activation. How-
ever, this reaction requires two steps: the formation of
dihydropyridine (DHP) and the oxidation of the DHP using
10% Pd/C and air in acetic acid.16 Very recently, Jones and
co-workers described the formation of polycyclic isoquino-
line salts from arylaldimines or benzo[h]quinoline and al-
kynes via C-H bond activation with rhodium complexes.17
The reaction intermediates were isolated and well-character-
ized.
Our continued interest in the metal-catalyzed synthesis of
heterocycles18 via metallacycles prompted us to explore the
possibility of constructing such metallacycles by the strategy
of chelation-assisted C-H activation. Recently, we reported
a palladium-catalyzed synthesis of functionalized fluoren-9-
one derivatives from an aldoxime ether and an aryl iodide.
This reaction involved two distinct steps;C-H activation
and Heck-type cyclization;in one pot.19 We also reported a
rhodium-catalyzed chelation-assisted β-C-H bond activa-
tion of R,β-unsaturated ketoximes and the subsequent reac-
tion with alkynes to afford substituted pyridine derivatives in
good to excellent yields.20 Herein, we describe the extension
of this work to various oxime substrates, including aromatic
ketoximes and exocyclic R,β-unsaturated cyclic ketone oxi-
mes. The present catalytic reaction provides a convenient
method for the synthesis of various isoquinoline derivatives
in one step in good to excellent yields without further
dehydrogenation or oxidation. In addition, the ketoxime
substrates are readily prepared from the corresponding
ketones and hydroxyamine and are relatively stable when
compared with the corresponding ketimines.
An alternative method for constructing the metallacycle
intermediate involves the direct chelation-assisted activation
of a C-H bond.9 In these similar types of reactions, alde-
hyde, ketone, imine, alcohol, amine, carboxylic acid, and
nitrile groups have been used as directing groups to activate
an ortho aromatic or olefinic C-H bond.10 Recently, several
examples of using oxime as a directing group for the catalytic
activation of aromatic or olefinic C-H bonds for organic
synthesis catalyzed by palladium complexes were reported.
In this context, Ryabov employed an oxime as a directing
group for the activation of an ortho aromatic C-H bond
using a palladium complex,11 and Sanford described a
palladium-catalyzed O-methyl oxime-directed activation of
sp2 and sp3 C-H bonds followed by oxygenation with ozone
and PhI(OAc)2.12 In 2006, Che reported the ortho amidation
of an O-methyl oxime via a palladium-catalyzed C-H
activation and subsequent nitrene insertion.13 Recently, Yu
developed a palladium-catalyzed oxidative ethoxycarbony-
lation of O-methyl oxime benzaldehyde with DEAD.14
In 2003, Jun demonstrated the synthesis of isoquinoline
derivatives via
a transition-metal-catalyzed chelation-
(9) (a) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698. (b) Ritleng, V.;
Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (c) Colby, D. A.; Bergman,
R. G.; Ellman, J. A. Chem. Rev. 2009, DOI: 10.1021/cr900005n. (d) Kakiuchi, F.;
Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698.
(e) Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. 2005, 127,
5936. (f) Masui, K.; Ikegami, H.; Mori, A. J. Am. Chem. Soc. 2004, 126, 5074,
and references therein. (g) Cao, C.; Li, Y.; Shi, Y.; Odom, A. L. Chem. Commun.
2004, 2002. (h) Tan, K. L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2001, 123, 2685. (i) Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A.
J. Am. Chem. Soc. 2001, 123, 9692. (j) Kuninobu, Y.; Kawata, A.; Takai, K.
J. Am. Chem. Soc. 2005, 127, 13498. (k) Kuninobu, Y.; Tokunaga, Y.; Kawata,
A.; Takai, K. J. Am. Chem. Soc. 2006, 128, 202. (l) Katagiri, T.; Mukai, T.; Satoh,
T.; Hirano, K.; Miura, M. Chem. Lett. 2009, 38, 118.
Results and Discussion
Treatment of acetophenone oxime (1a) with diphenylace-
tylene 2a in the presence of 3 mol % of Rh(PPh3)3Cl in
toluene at 130 °C for 12 h gave isoquinoline product 3a in
89% isolated yield. The structure of 3a was confirmed by 1H
NMR, 13C NMR, and mass spectral analysis.
(10) (a) Hennessy, E. J.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
12084. (b) Harayama, T.; Akiyama, T.; Nakano, Y.; Nishioka, H.; Abe, H.;
Takeuchi, Y. Chem. Pharm. Bull. 2002, 50, 519. (c) Lane, B. S.; Sames, D.
Org. Lett. 2004, 6, 2897. (d) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.;
Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112. (e) Ackermann, L.;
Althammer, A.; Born, R. Angew. Chem., Int. Ed. 2006, 45, 2619. (f)
Ackermann, L.; Born, R.; Bercedo, P. A. Angew. Chem., Int. Ed. 2007, 46,
6364. (g) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (h)
Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2008,
47, 4019. (i) Stuart, D. R.; Laperle, M. B.; Burgess, K. M. N.; Fagnou, K.
J. Am. Chem. Soc. 2008, 130, 16474. (j) Guimond, N.; Fagnou, K. J. Am.
Chem. Soc. 2009, 131, 12050.
To evaluate the effect of catalyst on the isoquinoline
formation reaction, various rhodium complexes were inves-
tigated in the reaction of 1a with 2a. First, we examined
the reaction in the absence of a metal catalyst. Compounds
1a and 2a were stirred in toluene at 130 °C for 24 h, and
no 3a was observed. Under similar reaction conditions,
(15) Lim, S.-G.; Lee, J. H.; Moon, C. W.; Hong, C. J.-B.; Jun, C.- H. Org.
Lett. 2003, 5, 2759.
(11) Oxime as a directing group for stoichiometric activation of C-H
bonds by palladium: Bezsoudnoba, E. Y.; Ryabov, A. D. J. Organomet.
Chem. 2001, 622, 38.
(12) Palladium-catalyzed O-methyl oxime as a directing group for activa-
tion of sp3 C-H bond followed by oxygenation with PhI(OAc)2: (a) Desai,
L. V.; Hull, K. L.; Sanford, S. M. J. Am. Chem. Soc. 2004, 126, 9542. For
activation of sp2 C-H bond, see: (b) Desai, L. V.; Malik, H. A.; Sanford,
S. M. Org. Lett. 2006, 8, 1141. (c) Desai, L. V.; Stowers, K. J.; Sanford, S. M.
J. Am. Chem. Soc. 2008, 130, 13285.
(16) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008,
130, 3645.
(17) Li, L.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130,
12414.
(18) (a) Jayanth, T. T.; Jeganmohan, M.; Cheng, C.-H. J. Org. Chem.
2004, 7, 8445. (b) Hsieh, J.-C.; Cheng, C.-H. Chem. Commun. 2005, 2459.
(c) Chang, H. -T.; Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2005, 39,
4955. (d) Jayanth, T. T.; Cheng, C.-H. Chem. Commun. 2006, 894.
(e) Bhuvaneswari, S.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2006, 8, 5581.
(19) Thirunakkarasu, V, S.; Parthasarathy, K.; Cheng, C.-H. Angew.
Chem., Int. Ed. 2008, 47, 9462.
(13) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128,
9048.
(14) Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am.
Chem. Soc. 2008, 130, 3304.
(20) (a) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett.
2008, 8, 325. (b) Parthasarathy, K.; Cheng, C.-H. Synthesis 2009, 8, 1400.
9360 J. Org. Chem. Vol. 74, No. 24, 2009