6768
M. Yamaoka et al. / Tetrahedron Letters 50 (2009) 6764–6768
by the treatment with AcCl in MeOH,15 the resultant alcohol was
oxidized with TEMPO to give the aldehyde in 80% yield for the
two steps. The aldehyde was then subjected to the Wittig reaction
with n-BuLi and isopropyltriphenylphosphonium iodide in THF to
afford 26 in 63% yield. Finally, hydrolysis of the acyl-protecting
groups in 26 with NaOH completed the synthesis of fomitellic acid
B (2). The spectroscopic data (1H, 13C NMR and IR spectra, HRMS,
and optical rotation) for the synthetic material were identical with
those of natural fomitellic acid B.16
In summary, the first asymmetric total synthesis of fomitellic
acid B (2) was accomplished. The essential features of the present
synthesis are twofold; (i) stereoselective construction of the tetra-
cyclic skeleton by a titanium(III)-mediated radical cascade cycliza-
tion of epoxypolyene, and (ii) generation of the enone moiety in
the B-ring via isomerization of the olefin followed by allylic oxida-
tion. The synthesis of other fomitellic acids and the related struc-
ture–activity relationship study are currently underway.
5. (a) Reusch, W.; Grimm, K.; Karoglan, J. E.; Martin, J.; Subrahamanian, K. P.;
Toong, Y.-C.; Venkataramani, P. S.; Yordy, J. D.; Zoutendam, P. J. Am. Chem. Soc.
1977, 99, 1953–1958; (b) Reusch, W.; Grimm, K.; Karoglan, J. E.; Martin, J.;
Subrahamanian, K. P.; Venkataramani, P. S.; Yordy, J. D. J. Am. Chem. Soc. 1977,
99, 1958–1964; (c) Gibson, J. R.; Reusch, W. Tetrahedron 1983, 39, 55–59; (d)
Wang, W.-Y.; Reusch, W. Tetrahedron 1988, 44, 1007–1014; (e) Lemoine, S.;
Adam, P.; Albrecht, P.; Connan, J. Tetrahedron Lett. 1996, 37, 2837–2840.
6. Corey et al. reported the preparation of
a similar vinyl iodide using a
diastereoselective Simmons–Smith methylenation for the construction of the
quaternary methyl group at C14 in the total synthesis of 24,25-
dihydrolanosterol.: Corey, E. J.; Lee, J.; Liu, D. R. Tetrahedron Lett. 1994, 35,
9149–9152. Initial attempts using this approach for the preparation of 8 were
unsuccessful due to the predominant formation of the cis-fused isomer.11
7. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156.
8. Midland, M. M.; Kwon, Y. C. J. Am. Chem. Soc. 1983, 105, 3725–3727.
9. Barton, D. H. R.; Bashiardes, G.; Fourrey, J.-L. Tetrahedron 1988, 44, 147–162.
10. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113,
4092–4096.
11. See the Supplementary data.
12. For pioneer works on Cp2TiCl-mediated epoxide openings, see: (a) Nugent, W.
A.; RajanBabu, T. V. J. Am. Chem. Soc. 1988, 110, 8561–8562; (b) RajanBabu, T.
V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986–997; For reviews, see: (c)
Gansäuer, A.; Bluhm, H. Chem. Rev. 2000, 100, 2771–2788; (d) Gansäuer, A.;
Narayan, S. Adv. Synth. Catal. 2002, 344, 465–475; (e) Gansäuer, A.; Lauterbach,
T.; Narayan, S. Angew. Chem., Int. Ed. 2003, 42, 5556–5573.
Acknowledgments
13. Cuerva et al. reported that the yield of monocyclization product, derived from
the premature trapping of intermediate radical species, increased by using
high concentrations of Cp2TiCl.17f Therefore, in order to prevent the
This research was supported in part by a Grant-in-Aid for Scien-
tific Research (B) (KAKENHI No. 18390010) from the Japan Society
for the Promotion of Science. We thank Professor Kengo Sakaguchi
and Professor Fumio Sugawara (Department of Applied Biological
Science, Tokyo University of Science) for kindly providing the spec-
tra (1H, 13C NMR, IR, and MS) of natural fomitellic acid B.
undesirable formation of monocyclization product 20a, employment of
a
catalytic amount of Cp2TiCl was also examined.17 Nonetheless, the best result
was obtained by using 3 equiv of Cp2TiCl.
14. Silvestre, S. M.; Salvador, J. A. R. Tetrahedron 2007, 63, 2439–2445.
15. Yeom, C.-E.; Lee, S. Y.; Kim, Y. J.; Kim, B. M. Synlett 2005, 1527–1530.
16. Data for the synthetic fomitellic acid B (2): Rf 0.37 (AcOEt/MeOH/H2O = 10/1/
0.5); ½a 2D3
ꢁ
+8.3 (c 0.18, MeOH); 1H NMR (400 MHz, CD3OD) d 5.13–5.05 (m, 1H),
4.04 (dd, J = 12.5, 4.4 Hz, 1H), 3.81 (dd, J = 11.2, 4.6 Hz, 1H), 2.91 (ddd, J = 21.7,
9.0, 9.0 Hz, 1H), 2.73 (dd, J = 16.6, 14.4 Hz, 1H), 2.57 (dd, J = 21.7, 6.3 Hz, 1H),
2.23 (dd, J = 14.4, 3.2 Hz, 1H), 2.10–1.76 (m, 8H), 1.75–1.60 (m, 1H), 1.66 (s,
3H), 1.60 (s, 3H), 1.52–1.23 (m, 5H), 1.17 (s, 3H), 1.17 (s, 3H), 1.12–1.00 (m,
1H), 0.95 (d, J = 6.1 Hz, 3H), 0.92 (s, 3H), 0.69 (s, 3H); 13C NMR (100 MHz,
CD3OD) d 200.6, 179.6, 169.3, 140.0, 131.8, 126.1, 73.1, 72.7, 54.3, 50.2, 49.2,
46.3, 45.7, 45.2, 38.6, 38.5, 37.4, 37.4, 33.5, 31.5, 29.8, 27.4, 25.9, 25.8, 25.5,
19.2, 17.7, 16.2, 14.4, 10.7; IR (KBr, cmꢀ1) 3400, 2927, 1710, 1682, 1645, 1375,
1269, 1036, 1014; HRMS (EI) calcd for C30H46O5: 486.3345, found: 486.3342.
17. For Cp2TiCl-catalyzed epoxide openings, see: (a) Gansäuer, A.; Bluhm, H. Chem.
Commun. 1998, 2143–2144; (b) Gansäuer, A.; Pierobon, M.; Bluhm, H. Angew.
Chem., Int. Ed. 1998, 37, 101–103; (c) Gansäuer, A.; Bluhm, H.; Pierobon, M. J.
Am. Chem. Soc. 1998, 120, 12849–12859; (d) Barrero, A. F.; Rosales, A.; Cuerva, J.
M.; Oltra, J. E. Org. Lett. 2003, 5, 1935–1938; (e) Fuse, S.; Hanochi, M.; Doi, T.;
Takahashi, T. Tetrahedron Lett. 2004, 45, 1961–1963; (f) Justicia, J.; Rosales, A.;
Buñuel, E.; Oller-López, J. L.; Valdivia, M.; Ha, A.; Oltra, J. E.; Barrero, A. F.;
Cárdenas, D. J.; Cuerva, J. M. Chem. Eur. J. 2004, 10, 1778–1788; (g) Justicia, J.;
Oltra, J. E.; Cuerva, J. M. J. Org. Chem. 2004, 69, 5803–5806; (h) Justicia, J.; Oller-
López, J. L.; Campaña, A. G.; Oltra, J. E.; Cuerva, J. M.; Buñuel, E.; Cárdenas, D. J. J.
Am. Chem. Soc. 2005, 127, 14911–14921; (i) Justicia, J.; Oltra, J. E.; Cuerva, J. M.
J. Org. Chem. 2005, 70, 8265–8272; (j) Gansäuer, A.; Justicia, J.; Rosales, A.;
Worgull, D.; Rinker, B.; Cuerva, J. M.; Oltra, J. E. Eur. J. Org. Chem. 2006, 4115–
4127; (k) Gansäuer, A.; Rosales, A.; Justicia, J. Synlett 2006, 927–929; (l)
Gansäuer, A.; Worgull, D.; Justicia, J. Synthesis 2006, 2151–2154; (m) Justicia, J.;
Álvarez de Cienfuegos, L.; Estévez, R. E.; Paradas, M.; Lasanta, A. M.; Oller, J. L.;
Rosales, A.; Cuerva, J. M.; Oltra, J. E. Tetrahedron 2008, 64, 11938–11943.
Supplementary data
Supplementary data associated with this article can be found in
References and notes
1. Tanaka, N.; Kitamura, A.; Mizushina, Y.; Sugawara, F.; Sakaguchi, K. J. Nat. Prod.
1998, 61, 193–197.
2. (a) Mizushina, Y.; Tanaka, N.; Kitamura, A.; Tamai, K.; Ikeda, M.; Takemura, M.;
Sugawara, F.; Arai, T.; Matsukage, A.; Yoshida, S.; Sakaguchi, K. Biochem. J. 1998,
330, 1325–1332; (b) Mizushina, Y.; Iida, A.; Ohta, K.; Sugawara, F.; Sakaguchi, K.
Biochem. J. 2000, 350, 757–763; (c) Obara, Y.; Nakahata, N.; Mizushina, Y.;
Sugawara, F.; Sakaguchi, K.; Ohizumi, Y. Life Sci. 2000, 67, 1659–1665.
3. Yamaoka, M.; Fukatsu, Y.; Nakazaki, A.; Kobayashi, S. Tetrahedron Lett. 2009, 50,
3849–3852.
4. For recent reviews, see: (a) Barrero, A. F.; Quílez del Moral, J. F.; Sánchez, E. M.;
Arteaga, J. F. Eur. J. Org. Chem. 2006, 1627–1641; (b) Cuerva, J. M.;Justicia, J.; Oller-
López, J. L.; Bazdi, B.; Oltra, J. E. Mini-Rev. Org. Chem. 2006, 3, 23–35; (c) Cuerva, J.
M.; Justicia, J.; Oller-López, J. L.; Oltra, J. E. Top. Curr. Chem. 2006, 264, 63–91; (d)
Gansäuer, A.; Justicia, J.; Fan, C.-A.; Worgull, D.; Piestert, F. Top. Curr. Chem. 2007,
279, 25–52; For enantioselective synthesis of natural products, see: (e) Justicia, J.;
Campaña, A. G.; Bazdi, B.; Robles, R.; Cuerva, J. M.; Oltra, J. E. Adv. Synth. Catal.
2008, 350, 571–576; (f) Domingo, V.; Silva, L.; Diéguez, H. R.; Arteaga, J. F.; Quílez
del Moral, J. F.; Barrero, A. F. J. Org. Chem. 2009, 74, 6151–6156.