C O M M U N I C A T I O N S
Scheme 1. Enantioselective Cyclopropanation with 1,2,3-Triazoles:
Scope of Olefinsa
is now available. The azavinyl carbenes readily react with olefins
under experimentally simple conditions, providing cyclopropane-
carboxaldehydes and N-sulfonyl homoaminocyclopropanes in gen-
erally excellent yields with high enantioselectivity. Further studies
of the scope, origin of high selectivity, and mechanism of the
reaction are underway in our laboratories.
Acknowledgment. Financial support of this work by the
National Institute of General Medical Sciences, National Institutes
of Health (GM087620), and the Skaggs Institute for Chemical
Biology is gratefully acknowledged.
a Unless specified otherwise, all reactions were carried out on a 0.5 mmol
scale with 1.2 equiv of olefin under ambient atmosphere. b Determined by
1H NMR analysis of the crude reaction mixture. c Using 2.0 equiv of alkene.
Supporting Information Available: Experimental details, charac-
terization data, NMR spectral charts, and crystallographic data for 7a
(CIF). This material is available free of charge via the Internet at http://
pubs.acs.org.
Scheme 2. Enantioselective Cyclopropanation of Styrene with
N-Methanesulfonyl 1,2,3-Triazolesa
References
(1) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides;
Wiley: New York, 1998.
(2) For recent reviews, see: (a) Davies, H. M. L.; Manning, J. R. Nature 2008,
451, 417. (b) Doyle, M. P. In Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley: New York, 2005; pp 341-355. (c)
Davies, H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003, 103, 2861. (d)
Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. ReV. 2003,
103, 977.
(3) For related transformations involving (2-pyrydyl)carbenoids, see: (a) Davies,
H. M. L.; Townsend, R. J. J. Org. Chem. 2001, 66, 6595. (b) Chuprakov,
S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463.
(4) R-Diazoimines are known to exist in cyclic 1,2,3-triazole form, except for
those bearing a strong electron-withdrawing group at N1. See: (a) Dimroth,
O. Ann. 1909, 364, 183. (b) Gilchrist, T. L.; Gymer, G. E. AdV. Heterocycl.
Chem. 1974, 16, 33.
(5) Raushel, J. Diss. Abstr. Int., B 2009, 69, 4763 (Ph.D. Dissertation, The
Scripps Research Institute, La Jolla, CA, 2009). (b) Cassidy, M. P.; Raushel,
J.; Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45, 3154. Also see ref 6a.
(6) (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V.
J. Am. Chem. Soc. 2008, 130, 14972. For transannulation of related
pyridotriazoles, see: (b) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V.
Angew. Chem., Int. Ed. 2007, 46, 4757.
a All reactions were carried out on a 0.5 mmol scale with 1.2 equiv of
olefin under ambient atmosphere. b Determined by 1H NMR analysis of
the crude reaction mixture. c Performed at 80 °C.
(7) Rh(II) carboxamidates were incompetent in this transformation. See the
Supporting Information for the full catalyst screening data.
reaction proceeded with complete chemoselectivity, and the com-
monly observed insertion into the allylic C-H bond8c,14 did not
occur.
(8) For recent application examples, see: (a) Davies, H. M. L.; Nagashima,
T.; Klino, J. L., III. Org. Lett. 2000, 2, 823. (b) Davies, H. M. L.; Lee,
G. H. Org. Lett. 2004, 6, 1233. (c) Davies, H. M. L.; Coleman, M. G.;
Ventura, D. L. Org. Lett. 2007, 9, 4971. Also see refs 3 and 6a.
(9) (a) Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett. 2006, 8, 3437.
(b) Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Org. Lett. 2007, 9,
2625. (c) Denton, J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787.
(10) For cyclopropanation, see: (a) DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.;
Fox, J. M. J. Am. Chem. Soc. 2009, 131, 7230. For C-H insertions, see:
(b) Minami, K.; Saito, H.; Tsutsui, H.; Nambu, H.; Anada, M.; Hashimoto,
S. AdV. Synth. Catal. 2005, 347, 1483. (c) Tsutsui, H.; Yamaguchi, Y.;
Kitagaki, S.; Nakamura, S.; Anada, M.; Hashimoto, S. Tetrahedron:
Asymmetry 2003, 14, 817. (d) Saito, H.; Oishi, H.; Kitagaki, S.; Nakamura,
S.; Anada, M.; Hashimoto, S. Org. Lett. 2002, 4, 3887.
Examination of the scope of the process with respect to the
1-sulfonyl 1,2,3-triazoles (Scheme 2) revealed that substrates
possessing both electron-rich and electron-deficient aryl groups at
C4 reacted smoothly to produce cyclopropanes 6j-m with excellent
enantioselectivity. Moreover, heteroaryl- and alkenyl-substituted
triazoles were competent substrates for this reaction (6n, 6o; Scheme
2), further demonstrating the utility of this methodology.
While the instability of sulfonyl imines 5 toward hydrolysis
precluded their isolation in pure form, we recognized that reduction
of 5 immediately after their synthesis could provide an easy access
to chiral homoaminocyclopropanes. Indeed, cyclopropanation of a
series of styrenes followed by the treatment of the crude imine
product with LiAlH4 furnished N-(cyclopropylmethyl) sulfonamides
7a-c in good yields with excellent enantioselectivity (eq 2).
In summary, a novel and very efficient Rh(II)-catalyzed asym-
metric cyclopropanation methodology that utilizes stable and readily
available N-sulfonyl 1,2,3-triazoles as azavinyl carbene precursors
(11) (a) Mu¨ller, P.; Allenbach, Y. F.; Robert, E. Tetrahedron: Asymmetry 2003,
14, 779. (b) Mu¨ller, P.; Bernardinelli, G.; Allenbach, Y. F.; Ferry, M.; Flack,
H. D. Org. Lett. 2004, 6, 1725. (c) Marcoux, D.; Charette, A. B. Angew.
Chem., Int. Ed. 2008, 47, 10155. (d) Marcoux, D.; Azzi, S.; Charette, A. B.
J. Am. Chem. Soc. 2009, 131, 6970.
(12) Generally, to avoid the carbene dimerization side process, a dilute solution
of diazo compound is added over several hours to a mixture of rhodium
catalyst and a large excess (3-10 equiv) of olefin.
(13) For a recently reported synthesis of chiral cyclopropyl aldehydes via a highly
efficient rhodium-catalyzed hydroformylation of cyclopropenes, see: Sher-
rill, W. M.; Rubin, M. J. Am. Chem. Soc. 2008, 130, 13804.
(14) Thompson, J. L.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 6090.
JA908075U
9
J. AM. CHEM. SOC. VOL. 131, NO. 50, 2009 18035