P. Allef – H. Kunz · Stereoselective Synthesis of α-Arylalkylamines
651
0.70 (light petroleum-ethyl acetate = 4 : 1), Rt = 16.20 min. – 89.32, 88.81 (C-1); 72.89, 72.77, 71.36, 71.06, (C-3, C-5);
C36H57NO9 (647.9): calcd. C 66.74, H 8.87, N 2.16; found 67.06, 67.22, 65.95, 65.63 (C-2, C-4); 64.81, 64.33 (α-C);
C 67.08, H 8.76, N 2.02. – 1H NMR (400 MHz, CDCl3): 62.03, 61.11 (C-6); 39.47, (-CH2-N); 38.87, 38.57, 38.53
δ = 7.26 (m, 5H, arom. (ma, mi)); 5.43 (2t, J2,3 = 9.8 Hz, (Piv-Cquart); 27.15, 27.08, 26.97, 26.94 (Piv-CH3); 24.05 (-
J2,1 = 9.8 Hz, 1H, H-2 (ma, mi)); 5.31 (d, J4,3 = 3.1 Hz, CH2-); 14.62, 14.37, 11.67, 11.28 (-CH3).
1H, H-4 (mi)); 5.27 (d, J4,3 = 2.7 Hz, 1H, H-4 (ma)); 4.99
N-(4-Methoxyphenyl)-N-(2,3,4,6-tetra-O-pivaloyl-β-D-
galactopyranosyl)-(1-phenyl)propylamine (10)
(dd, J3,4 = 3.1 Hz, J3,2 = 9.8 Hz, 1H, H-3 (mi)); 4.92 (dd,
J3,4 = 3.1 Hz, J3,2 = 9.8 Hz, 1H, H-3 (ma)); 4.32 (d, J1,2
=
9.4 Hz, 1H, H-1 (mi)); 4.16 (m, J1,2 = 9.4 Hz, 3H, H-1
(ma), H6 (ma, mi)); 3.94 (m, 1H, α-CH (mi)); 3.90 (m,
2H, α-CH (ma) H-6ꢀ (mi)); 3.81 (m, 2H, H-6ꢀ (ma)); 3.57
(m, 1H, H-5 (ma)); 2.92 (m, 1H, -CH2-N- (ma, mi)); 2.78
(m, 1H, -CH2-N- (ma, mi)); 1.42 (d, J = 6.7 Hz, 3H, β-
CH3 (mi)); 1.38 (d, J = 6.7 Hz, 3H, β-CH3 (mi)); 1.24 –
0.97 (m, 39H, Piv-CH3 + -CH3). – 13C NMR (100.6 MHz,
CDCl3): δ = 177.78, 177.80, 176.28, 176.84, 176.80, 176.77
(Piv-C=O); 144.16, 143.97 (arom. Cquart); 128.17, 128.02,
127.79, 127.75, 127.04, 126.74 (arom. C); 89.89, 88.98
(C-1); 72.97, 72.85, 71.52, 71.33, (C-3, C-5); 67.62, 67.42,
66.18, 65.69 (C-2, C-4); 62.07 (C-6); 58.06, 56.50 (α-C);
39.27 (-CH2-N); 39.02, 38.99, 38.69 (Piv-Cquart); 27.24,
27.19, 27.08 (Piv-CH3); 26.79 (-CH2-); 21.20, 17.98, 14.82,
14.21 (-CH3).
In this case, 0.16 g (0.75 mmole) N-benzylidene-(4-
methoxyphenyl)amine [19] (8) was glycosylated with 2
and the intermediate glycosyl iminium salt 9 reacted with
5 mL of a diethylzinc solution (1 M in n-heptane) according
to the general procedure. The diastereomers 10 were sepa-
rated by analytical HPLC in MeCN-H2O = 93 : 7 to 100 : 0
within 30 min on a Knauer Kromasil C18 column (diastere-
omeric excess de 91 %) and purified by preparative HPLC in
MeCN-H2O = 93 : 7 to 100.0 within 90 min on a Knauer Kro-
masil C18 column. Yield: 19 mg (R)-10 (3.6 %) and 419 mg
(S)-10 (79 %); mixture of diastereomers 10: colorless solid,
m. p. 69 – 72 ◦C, Rf = 0.66 (light petroleum-ethyl acetate
4 : 1). – C42H61NO10 (740.0): calcd. C 68.17, H 8.31, N 1.89;
found C 67.84, H 8.26, N 1.79.
(R)-diastereomer, (R)-10: [α]2D2 = +71.7 (c = 1, CHCl3);
Rt = 16.71 min. – 1H NMR (400 MHz, CDCl3): δ = 7.25
(m, 5H, arom.); 7.15 (d, J = 9.0 Hz, 2H, arom.); 5.29 (d,
J4,3 = 3.1 Hz, 1H, H-4); 5.19 (t, J2,3 = 9.4 Hz, 1H, H-2);
4.89 (dd, J3,4 = 3.1 Hz, J3,2 = 9.8 Hz, 1H, H-3 ); 4.52
(d, J1,2 = 9.4 Hz, 1H, H-1); 4.22 (m, 1H, H-6); 4.13 (m,
1H, H-5); 4.00 (m, 1H, H-6ꢀ); 3.82 (t, J = 6.7 Hz, 1H,
α-CH); 3.73 (s, 3H, -OCH3); 1.98 (m, 2H, -CH2-); 1.21 –
0.98 (4, 36H, Piv-CH3); 0.68 (t, J = 7.0 Hz; 3H, -CH3). –
13C NMR (100.6 MHz, CDCl3): δ = 177.98, 177.38, 176.79,
175.72 (Piv-C=O); 156.95, 140.47, 138.15 (arom. Cquart);
129.80, 129.11, 128.02, 127.26, 113.32 (arom. C); 88.95
(C-1); 73.12, 71.32 (C-3, C-5); 70.29 (α-C); 67.55, 65.92
(C-2, C-4); 62.34 (C-6); 55.11 (-OCH3); 38.94, 38.75, 38.62,
38.47 (Piv-Cquart); 27.17, 27.14, 27.01 (Piv-CH3); 25.63 (-
CH2-); 11.62 (-CH3).
N-Ethyl-N-(2,3,4,6-tetra-O-pivaloyl-β-D-galactopyrano-
syl)-(1-phenyl)-propylamine (7)
According to the general procedure 0.1 g of N-
benzylidene-ethylamine (1) was glycosylated and reacted
with 5 mL of a solution of diethylzinc (1M in n-heptane,
5 mmol). The diastereomeric ratio was recorded by 1H NMR
spectroscopy of 7 (de 93 %). The product 7 was purified by
preparative HPLC in MeCN-H2O = 93 : 7 to 100 : 0 in 30 min
on a Knauer Kromasil C18 column and by recrystallization
from CH2Cl2-MeOH =◦1 : 2. Yield: 377 mg (77 %); color-
less solid, m. p. 45 – 47 C, Rf = 0.70 (light petroleum-ethyl
acetate 4 : 1), Rt = 21.60 min. – C37H59NO9 (661.2): calcd.
C 67.21, H 8.99, N 2.12; found C 67.25, H 8.93, N 2.03. –
1H NMR (400 MHz, CDCl3): δ = 7.24 (m, 5H, arom. (ma,
(S)-diastereomer, (S)-10: [α]2D2 = +60.2 (c = 1, CHCl3);
mi)); 5.39 (t, J2,3 = 9.7 Hz, 1H, H-2 (ma, mi)); 5.32 (d, J4,3
=
Rt = 18.26 min. – 1H NMR (400 MHz, CDCl3): δ = 7.27
2.9 Hz, 1H, H-4 (mi)); 5.24 (d, J4,3 = 2.9 Hz, 1H, H-4 (ma)); (m, 5H, arom.); 7.16 (d, J = 9.6 Hz, 2H, arom.); 6.76 (d,
4.97 (dd, J3,4 = 3.2 Hz, J3,2 = 9.7 Hz, 1H, H-3 (mi)); 4.91 J = 9.0 Hz, 2H, arom.); 5.18 (d, J4,3 = 2.7 Hz, 1H, H-4);
(dd, J3,4 = 2.9 Hz, J3,2 = 10.0 Hz, 1H, H-3 (ma)); 4.37 (d, 4.91 (t, J2,1 = 9.4 Hz, 1H, H-2); 4.79 (dd, J3,4 = 2.7 Hz,
J1,2 = 9.1 Hz, 1H, H-1 (mi)); 4.18 (m, J1,2 = 9.4 Hz, 1H, 1H, H-2); 4.79 (dd, J3,4 = 2.7 Hz, J3,2 = 9.8 Hz, 1H, H-3);
H-1 (ma)); 4.04 (m, 1H, H-5 (mi)); 3.94 (m, 1H, H-6 (mi)); 4.31 (d, J1,2 = 9.0 Hz, 1H, H-1); 4.18 (m, 1H, H-6); 4.11
3.77 (m, 3H, H-5, 6,6ꢀ (ma), H-6ꢀ (mi), α-CH (mi)); 3.52 (m, 1H, H-5); 3.92 (m, 1H, H-6ꢀ); 3.76 (s, 3H, -OCH3);
(t, J = 7.0 Hz, 1H, α-H (ma)); 2.92 (m, 1H, -CH2-N- (ma, 3.76 (t, J = 6.7 Hz, 1H, α-CH); 1.46 (m, 2H, -CH2-); 1.19 –
mi)); 2.72 (m, 1H, -CH2-N- (ma, mi)); 1.86 (m, 1H, β-CH2- 0.98 (4s, 36H, Piv-CH3); 0.50 (t, J = 7.0 Hz; 3H, -CH3). –
(ma, mi)); 1.74 (m, 1H, β-CH2- (ma, mi)); 1.21 – 0.97 (m, 13C NMR (100.6 MHz, CDCl3): δ = 177.84, 177.28, 176.64,
39H, Piv-CH2-CH3 + -N-CH2-CH3); 0.67 (t, J = 7.0 Hz; 175.85 (Piv-C=O); 157.93, 141.76, 136.62 (arom. Cquart);
3H, -CH3). – 13C NMR (100.6 MHz, CDCl3): δ = 177.77, 131.67, 128.66, 128.02, 127.29, 113.18 (arom. C); 89.17
177.19, 176.70, 176.56 (Piv-C=O); 141.76, 141.63 (arom. (C-1); 73.08, 71.08 (C-3, C-5); 67.42 (α-C); 67.22, 66.45
Cquart); 128.56, 127.94, 127.80, 126.99, 126.77 (arom. C); (C-2, C-4); 61.89 (C-6); 55.13 (-OCH3); 38.80, 38.65, 38.54
Brought to you by | California State University Madden Library Fresno
Authenticated
Download Date | 7/24/15 3:32 PM