Journal of the American Chemical Society
ARTICLE
(8) (a) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am. Chem. Soc. 2008,
130, 14422–14423. (b) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi,
Z.-J. J. Am. Chem. Soc. 2008, 130, 14468–14470. (c) Li, Z.; Zhang, S.-L.;
Fu, Y.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 8815–8823. (d)
Li, B.-J.; Li, Y.-Z.; Lu, X.-Y.; Liu, J.; Guan, B.-T.; Shi, Z.-J. Angew. Chem.
Int. Ed. 2008, 47, 10124–10127. (e) Shimasaki, T.; Tobisu, M.; Chatani,
N. Angew. Chem. Int. Ed. 2010, 49, 2929–2932. (f) Molander, G. A.;
Beaumard, F. Org. Lett. 2010, 12, 4022–4025.
(9) (a) Antoft-Finch, A.; Blackburn, T.; Snieckus, V. J. Am. Chem.
Soc. 2009, 131, 17750–17752. (b) Quasdorf, K. W.; Riener, M.; Petrova,
K. V.; Garg, N. K. J. Am. Chem. Soc. 2009, 131, 17748–17749. (c) Xi, L.;
Li, B.-J.; Wu, Z.-H.; Lu, X.-Y.; Guan, B.-T.; Wang, B.-Q.; Zhao, K.-Q.;
Shi, Z.-J. Org. Lett. 2010, 12, 884–887. (d) Dallaire, C.; Kolber, I.;
Gingras, M. Org. Synth. 2002, 78, 42. (e) Sengupta, S.; Leite, M.; Raslan,
D. S.; Quesnelle, C.; Snieckus, V. J. Org. Chem. 1992, 57, 4066–4068.
(10) (a) Macklin, T. K.; Snieckus, V. Org. Lett. 2005, 7, 2519–2522.
(b) Wehn, P. M.; Du Bois, J. Org. Lett. 2005, 7, 4685–4688. (c) Ramgren,
S. D.; Silberstein, A. L.; Yang, Y.; Garg, N. K. Angew. Chem. Int. Ed. 2011,
50, 2171–2173.
(11) For functionalization by electrophilic aromatic substitution,
which favors para substitution, see: Smith, M. B.; March, J. March’s
Advanced Organic Chemistry, 6th ed.; John Wiley & Sons, Inc.: Hoboken,
NJ, 2007; p 670.
(12) For functionalization by directed ortho metalation, see: (a)
Snieckus, V. Chem. Rev. 1990, 90, 879–933. (b) Hartung, C. G.; Snieckus, V.
In Modern Arene Chemistry; Astruc, D., Ed.; Wiley-VCH: New York, 2002;
pp 330À367. (c) Macklin, T.; Snieckus, V. In Handbook of C-H Transforma-
tions; Dyker., G., Ed.; Wiley-VCH: New York, 2005; pp 106À119.
(13) For functionalization using directed ortho metalation/
ipso-desilylation, see: (a) Zhao, Z.; Snieckus, V. Org. Lett. 2005,
7, 2523–2526. (b) Bracegirdle, S.; Anderson, E. A. Chem. Commun.
2010, 46, 3454–3456.
1À12 h using Kugelrohr apparatus to achieve a 1:10 ratio of boronic
acid:boroxine. The ratio was determined by 1H NMR analysis immedi-
ately prior to use. (b) For comment on similar observations, see:
Storgaard, M.; Ellman, J. A. Org. Synth. 2009, 86, 360–373. (c) For
the crucial role of water in aryl acetate cross-couplings, see ref 8b.
(23) Comparable yields were obtained from reactions containing 10
or 20 mol % of the PCy3HBF4 additive.
(24) Yu, D.-G.; Yu, M.; Guan, B.-T.; Li, B.-J.; Zheng, Y.; Wu, Z.-H.;
Shi, Z.-J. Org. Lett. 2009, 11, 3374–3377.
(25) Comparable results were obtained when N,N-diethyl sulfa-
mates were used in place of N,N-dimethyl sulfamates. The N,N-dimethyl
derivatives were pursued because the N,N-dimethyl sulfamoylating
reagent is commercially available, see ref 27.
(26) Aryl sulfamates have been shown to be less effective, but still
synthetically useful, substrates in DoM reactions compared to aryl
carbamates; see ref 10a.
(27) N,N-Dimethylsulfamoyl chloride from Aldrich Chemical Co., Inc.
costs approximately $0.80 per gram (CAS Registry No. 13360-57-1).
(28) de Silva, S. O.; Reed, J. N.; Billedeau, R. J.; Wang, X.; Norris,
D. J.; Snieckus, V. Tetrahedron 1992, 48, 4863–4878.
(29) For examples of Pd-catalyzed SuzukiÀMiyaura couplings that are
tolerant of heterocycles, see: (a) Billingsley, K.; Buchwald, S. L. J. Am. Chem.
Soc. 2007, 129, 3358–3366. (b) Guram, A. S.; Wang, X.; Bunel, E.; Faul,
M. M.; Larsen, R. D.; Martinelli, M. J. J. Org. Chem. 2007, 72, 5104–5112.
For a pertinent review, see: Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.;
Kellogg, R. M. Org. Proc. Res. Dev. 2010, 14, 30–47.
(30) For reviews of theoretical studies, see: (a) Braga, A. A. C.; Ujaque,
G.; Maseras, F. In Computational Modeling for Homogeneous and Enzymatic
Catalysis. A Knowledge-Base for Designing Efficient Catalysis; Morokuma, K.,
Musaev, D. G., Eds.; Wiley-VCH GmbH & Co. KGaA: Weinheim, 2008; pp
109À130. (b) Xue, L. Q.; Lin, Z. Y. Chem. Soc. Rev. 2010, 39, 1692–1705.
(31) For theoretical studies of Pd-catalyzed SuzukiÀMiyaura
couplings, see: (a) Sumimoto, M.; Iwane, N.; Takahama, T.; Sakaki, S.
J. Am. Chem. Soc. 2004, 126, 10457–10471. (b) Braga, A. A. C.; Morgon,
N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127, 9298–9307.
(c) Gooβen, L. J.; Koley, D.; Hermann, H. L.; Thiel, W. J. Am. Chem. Soc.
2005, 127, 11102–11114. (d) Gooβen, L. J.; Koley, D.; Hermann, H. L.;
Thiel, W. Organometallics 2006, 25, 54–67. (e) Braga, A. A. C.; Ujaque,
G.; Maseras, F. Organometallics 2006, 25, 3647–3658. (f) Braga, A. A. C.;
Morgon, N. H.; Ujaque, G.; Lledos, A.; Maseras, F. J. Organomet. Chem.
2006, 691, 4459–4466. (g) Sicre, C.; Braga, A. A. C.; Maseras, F.; Cid,
M. M. Tetrahedron 2008, 64, 7437–7443. (h) Huang, Y. L.; Weng, C. M.;
Hong, F. E. Chem.—Eur. J. 2008, 14, 4426–4434. (i) Gourlaouen, C.;
Ujaque, G.; Lledꢀos, A.; Medio-Simon, M.; Asensio, G.; Maseras, F. J. Org.
Chem. 2009, 74, 4049–4054. (j) Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones,
G. C.; Harvey, J. N. J. Mol. Catal. A: Chem. 2010, 324, 39–47.
(32) (a) Ahlquist, M.; Fristrup, P.; Tanner, D.; Norrby, P. O.
Organometallics 2006, 25, 2066–2073. (b) Ahlquist, M.; Norrby, P. O.
Organometallics 2007, 26, 550–553. (c) Li, Z.; Fu, Y.; Guo, Q. X.; Liu, L.
Organometallics 2008, 27, 4043–4049. (d) McMullin, C. L.; Jover, J.;
Harvey, J. N.; Fey, N. Dalton Trans. 2010, 39, 10833–10836.
(33) (a) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. J. Am. Chem.
Soc. 2002, 124, 2839–2852. (b) Ananikov, V. P.; Musaev, D. G.; Morokuma,
K. Organometallics 2005, 24, 715–723. (c) Zuidema, E.; van Leeuwen, P. W.
N. M.; Bo, C. Organometallics 2005, 24, 3703–3710. (d) Ananikov, V. P.;
Musaev, D. G.; Morokuma, K. Eur. J. Inorg. Chem. 2007, 5390–5399. (e)
Koizumi, T.; Yamazaki, A.; Yamamoto, T. Dalton Trans. 2008, 3949–3952.
(f) Ariafard, A.; Yates, B. F. J. Organomet. Chem. 2009, 694, 2075–2084.
(34) For a theoretical study of Ni-catalyzed SuzukiÀMiyaura cross-
couplings of aryl acetates, see ref 8c.
(14) For Pd-catalyzed ortho functionalization of aryl pivalates, see: (a)
Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc.
2010, 132, 468–469. For Pd-catalyzed ortho functionalization of aryl
carbamates, see: (b) Bedford, R. B.; Webster, R. L.; Mitchell, C. J. Org.
Biomol. Chem. 2009, 7, 4853–4857. (c) Zhao, X.; Yeung, C. S.; Dong, V. M.
J. Am. Chem. Soc. 2010, 132, 5837–5844. (d) Nishikata, T.; Abela, A. R.;
Huang, S.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 4978–4979. For a
recent Ir-catalyzed process, see: (e) Yamazaki, K.; Kawamorita, S.; Ohmiya,
H.; Sawamura, M. Org. Lett. 2010, 12, 3978–3981.
(15) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
(b) Suzuki, A. Chem. Commun. 2005, 4759–4763. (c) Doucet, H. Eur. J.
Org. Chem. 2008, 2013–2030.
(16) (a) For preliminary communications involving this work, see
refs 9a and 9b. (b) Following these publications, Shi and co-workers
reported an alternate protocol for the SuzukiÀMiyaura coupling of aryl
carbamates (see ref 9c). (c) For SuzukiÀMiyaura couplings of aryl
carbamates and sulfamates under microwave conditions, see: Baghbanzadeh,
M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 1507–1510.
(17) NiCl2(PCy3)2 (CAS Registry No. 19999-87-2) is commercially
available from Strem Chemicals, Inc. (catalog no. 28-0091) and Aldrich
Chemical Co., Inc. (catalog no. 708526). Alternatively, it can be
prepared in multigram quantities following a simple one-step protocol,
see ref 8a and the following: (a) Stone, P. J.; Dori, Z. Inorg. Chim. Acta
1970, 5, 434–438. (b) Barnett, K. W. J. Chem. Educ. 1974, 51, 422–423.
(18) Quasdorf, K. W.; Garg, N. K. Encyclopedia of Reagents for
Organic Synthesis, DOI 10.1002/047084289X.rn01201.
(19) In the presence of excess arylboronic acid, NiCl2(PCy3)2 likely
undergoes reduction to an active Ni(0) catalyst; see: Zim, D.; Monteiro,
A. L. Org. Lett. 2001, 3, 3049.
(20) The selection of boronic acid coupling partner was made in
order to facilitate product purification.
(21) Control experiments show that a large excess of water significantly
reduces catalytic activity, likely by forming inactive nickel hydroxides/
oxides, see: Inada, K.; Miyaura, N. Tetrahedron 2000, 56, 8657–8660.
(22) (a) Since the addition of water to the boroxine is inaccurate on
small-scale operation, the boronic acids were heated under vacuum for
(35) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Lee,
C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
(36) Kruger, C.; Tsay, Y.-H. J. Organomet. Chem. 1972, 34, 387–395.
(37) (a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995–2001.
(b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003,
24, 669–681.
(38) Frisch, M. J. et al. Gaussian 03, Revision D.01; Gaussian, Inc.:
Wallingford, CT, 2004.
6362
dx.doi.org/10.1021/ja200398c |J. Am. Chem. Soc. 2011, 133, 6352–6363