C O M M U N I C A T I O N S
Table 2. Substrate Scopea
forms a new ꢀ-amino acid, C-C bond, and amide linkage in a
single operation (51% yield).
In summary, we have developed a highly selective and versatile
Mannich reaction using a new concept in carbene catalysis.
Beginning from an R-aryloxyacetaldehyde, the addition of a carbene
initiates the elimination of an aryloxy anion with concomitant enol/
enolate formation. In the presence of activated imines, a Mannich
reaction occurs to afford ꢀ-amino acyl azolium intermediates. The
aryloxy anion can “rebound” by re-entering the catalytic cycle,
regenerating the catalyst, and delivering a useful activated inter-
mediate. These ꢀ-amino esters can be intercepted in situ to yield
valuable nitrogen-containing compounds. Current investigations are
focused on enhancing and exploring this rebound strategy in carbene
catalysis which will be reported in due course.
entry
R
product
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
9
Ph
3
4
5
6
7
8
9
10
11
12
72
70
66
61
75
69
64
71
56
64
94
95
92
90
91
91
88
90
95
92
4-Me-C6H4
2-naphth
1-naphth
3-Br-C6H4
4-Cl-C6H4
2-Cl-C6H4
3,4-Cl-C6H3
4-F-C6H4
10
3-MeO-C6H4
Acknowledgment. Support for this work was generously
provided by NIGMS (RO1 GM73072), Amgen, GSK, AstraZeneca,
and the Alfred P. Sloan Foundation. E.M.P is a recipient of a
2008-2009 ACS Division of Organic Chemistry fellowship. Y.K.
thanks Ono Pharmaceuticals for support.
a 3 equiv of
1 in 0.1 M
THF/CH2Cl2 (1:4). b Isolated yields.
c Determined by HPLC with a chiral stationary phase.
Table 3. Synthetic Transformations
Supporting Information Available: Experimental procedures and
spectral data for new compounds. This material is available free of
References
(1) (a) Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds. ComprehensiVe
Asymmetric Catalysis, Vol. 1-3; Springer: Berlin, Germany, 1999. (b) Arya,
P.; Qin, H. P. Tetrahedron 2000, 56, 917–947.
(2) Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Weinheim, 2004. For
selected examples, see. (a) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.;
Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1999, 121, 4168–4178. (b)
Trost, B. M.; Ito, H. J. Am. Chem. Soc. 2000, 122, 12003–12004. (c)
Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124,
11240–11241. (d) Evans, D. A.; Downey, C. W.; Hubbs, J. L. J. Am. Chem.
Soc. 2003, 125, 8706–8707.
(3) (a) List, B. Acc. Chem. Res. 2004, 37, 548–557. (b) Notz, W.; Tanaka, F.;
Barbas, C. F. Acc. Chem. Res. 2004, 37, 580–591. (c) Chi, Y.; Gellman,
S. H. J. Am. Chem. Soc. 2006, 128, 6804–6805. (d) MacMillan, D. W. C.
Nature 2008, 455, 304–308. (e) Yang, J.; Chandler, C.; Stadler, M.;
Kampen, D.; List, B. Nature 2008, 452, 453–455.
(4) (a) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534–541. (b)
Marion, N.; Diez-Gonzalez, S.; Nolan, I. P. Angew. Chem., Int. Ed. 2007,
46, 2988–3000.
(5) (a) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905–908. (b) Maki, B. E.;
Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371–374. (c)
Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem.,
Int. Ed. 2007, 46, 3107–3110. (d) Wadamoto, M.; Phillips, E. M.; Reynolds,
T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098–10099. (e)
Phillips, E. M.; Wadamoto, M.; Roth, H. S.; Ott, A. W.; Scheidt, K. A.
Org. Lett. 2009, 11, 105–108.
(6) For approaches not employing rebound catalysis with unstable R-chloroalde-
hydes, see: (a) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406–
16407. (b) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128,
15088–15089. For a related carbene-catalyzed acyl transfer reaction, see:
Thomson, J. E.; Campbell, C. D.; Concellon, C.; Duguet, N.; Rix, K.; Slawin,
A. M. Z.; Smith, A. D. J. Org. Chem. 2008, 73, 2784–2791.
(7) (a) Abdel-Magid, A. F.; Cohen, J. H.; Maryanoff, C. A. Curr. Med. Chem.
1999, 6, 955–70. (b) Juaristi, E.; Lopez-Ruiz, H. Curr. Med. Chem. 1999,
6, 983–1004. (c) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991–8035.
For carbene-catalyzed additions of ketenes to imines, see: (d) Zhang, Y.-
R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org. Lett. 2008, 10, 277–280. (e)
Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol.
Chem. 2008, 6, 1108-11–1113.
a Isolated yields. b Determined by HPLC with a chiral stationary phase.
c See Supporting Information for absolute configuration determination.
the catalytic cycle and facilitate turnover by adding to the acyl
azolium intermediate (IV).10
4-Nitrophenoxyacetaldehyde with several aromatic imines affords
products with good yields and excellent enantioselectivity (Table 2).
Electron-withdrawing groups are accommodated in different positions
with a minimum 88% ee for the products (entries 6-9). Naphthyl
derivatives are also tolerated with good yields and excellent enanti-
oselectivity (entries 3 and 4). Halogen substitution is allowed with
varying positions and types of substitution. Imines derived from
aliphatic aldehydes are not successful coupling partners.
To demonstrate the value of this rebound catalysis strategy, we
intercepted the initial amino ester formed in situ (V in Scheme 1)
with a variety of nucleophiles (Table 3). Once the starting material
is consumed, several reagents can be added directly to the reaction
to furnish useful compounds. Basic conditions (MeOH/aq. NaOH)
furnished N-tosyl ꢀ-amino acid 13 in good yield (71%),11 while
the addition of sodium methoxide promoted facile transesterification
to the corresponding methyl ester in 61% yield. The reduction of
the phenyl ester was achieved with LiBH4 to yield 1,3-amino
alcohols without loss of the stereochemical integrity (70% yield,
98% ee). Since peptides containing ꢀ-amino acids are useful, the
initial 4-nitrophenyl ester provided the impetus for us to investigate
the synthesis of these compounds using this new reaction.12 The
peptide coupling with benzyl protected alanine is successful and
(8) (a) Breslow, R.; Schmuck, C. Tetrahedron Lett. 1996, 37, 8241–8242. (b)
Reynolds, T. E.; Stern, C. A.; Scheidt, K. A. Org. Lett. 2007, 9, 2581–2584.
(9) The control experiment combining R-chloroacetaldehyde and imine 1a under
conditions from entry 7, Table 1 resulted in no observable product
formation. See Supporting Information for details.
(10) ꢀ-Lactams have not been observed in these reactions, even prior to addition
of external nucleophile. For complete conversion of the imine, 3 equiv of
1 of are required. Further studies to understand this process are underway.
(11) For removal of the tosyl group of 13 with no impact on optical purity, see:
Sivakumar, A. V.; Babu, G. S.; Bhat, S. V. Tetrahedron: Asymmetry 2001,
12, 1095–1099.
(12) (a) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman,
S. H. J. Am. Chem. Soc. 1996, 118, 13071–13072. (b) Seebach, D.;
Overhand, M.; Kuhnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel, U.;
Widmer, H. HelV. Chim. Acta 1996, 79, 913–941. (c) Cheng, R. P.;
Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001, 101, 3219–3232.
JA9094044
9
J. AM. CHEM. SOC. VOL. 131, NO. 50, 2009 18029