pubs.acs.org/joc
(CMB), mechlorethamine, and phosphamide mustards stems
Efficient Synthesis of Functionalized Aziridinium
Salts
from reaction of aziridinium cation intermediate derived from
the mustards with guanine residues in DNA to form inter-
strand cross-link.2 N-alkylation of aziridines,3 intramolecular
substitution reaction of β-amino halides,4 and mesylation or
triflation of β-amino alcohols5 were reported to produce
quaternary aziridinium cations as reactive intermediates in situ
or isolable salts6 containing a non-nucleophilic counteranion
such as fluoroborate, perchlorate, or triflate.
Hyun-Soon Chong,* Hyun A. Song, Mamta Dadwal,
Xiang Sun, Inseok Sin, and Yunwei Chen
Chemistry Division, Biological, Chemical, and Physical
Sciences Department, Illinois Institute of Technology,
Chicago, Illinois 60616
Recently, we reported the isolation of a series of stable
aziridinium salts containing bromide as a counteranion
directly from bromination of β-amino alcohols using various
brominating agents under mild conditions.7 The aziridinium
salts reported therein are stable at room temperature and can
be stored at -20 °C over years and preserved in an acidic
medium during removal of a protecting group. We also
demonstrated that the regiospecific ring-opening and intra-
molecular rearrangement of the aziridinium salts can gene-
rate the functionalized organic molecules such as β-amino
nitriles, allyl amines, and C-functionalized oxomorpholine.
In this paper, we sought to broaden the scope of formation
of aziridinium salts using various β-amino alcohols. First, we
were interested in exploring the effect of solvent on the
formation of aziridinium salts.
Bromination of N-(benzyl) and N-(tert-butoxycarbonyl-
methyl)-derived β-amino alcohol 1a was carried out in four
different solvents, CHCl3, CH2Cl2, CH3CN, and THF
(Scheme 1). Treatment of β-amino alcohol 1a in a solvent
with PPh3 and NBS at 0 °C for 4 h and warming the solution
to room temperature for 1 h resulted in the conversion of 1a
to the desired aziridinium salt 2a. Among the solvents
studied, polar aprotic CH3CN was found to be the most
efficient solvent for the formation of 2a (76%). The lowest
isolated yield of 2a was obtained from the reaction in THF,
possibly due to low solubility of the amino alcohol 1a in the
solvent.
Received September 2, 2009
Various aziridinium salts were efficiently prepared from
bromination of a series of backbone substituted N,N-
bisubstituted β-amino alcohols and isolated via flash
column chromatography. The effect of C-substitution,
N-substitution, solvent, leaving group, and counter-
anions on formation of the isolable aziridinium salts
was investigated.
Aziridinium salts have been utilized as reactive intermediates
in asymmetric synthesis of 1,2- and 1,3-diamines, 3,4-diamino
nitriles, R,β-diaminoesters, and complex natural products.1 In
addition, they are involved in the biological activity of nitrogen
mustards as cancer drugs. Anticancer activity of chlorambucil
We extended our investigation to the effect of leaving
group and counteranion on the formation of aziridinium
salts. N,N-Bisubstituted β-amino alcohol 1b was reacted
with various reagents (Table 1). As expected, azridinium
cation 2b was produced from bromination of 1b with NBS/
PPh3 in excellent yield (89%, Table 1). Reaction of 1b with
thionyl chloride (SOCl2, Table 1) at room temperature
provided an inseparable 1:1 mixture of aziridinium salt
(3b) and the normal substitution product (4b). When the
same reaction of 1b with SOCl2 was carried out under reflux,
aziridinium cation 3b was obtained as the exclusive product
(Table 1). Interestingly, the reaction of 1b with methanesul-
fonyl chloride (MsCl) provided a mixture of 3b and 4b
(1) (a) Lucet, D.; Gall, T. L.; Mioskowski, C. Angew. Chem., Int. Ed.
1998, 37, 2580–2627. (b) de Sousa, S. E.; O’Brien, P.; Poumellec, P. J. Chem.
Soc., Perkin Trans. 1 1998, 1483–1492. (c) Chuang, T. H.; Sharpless, K. B.
Org. Lett. 1999, 1, 1435–1437. (d) Graham, M. A.; Wadsworth, A. H.;
Thornton-Pett, M.; Payner, C. M. Chem. Commun. 2001, 966–967. (e)
Chong, H.-S.; Ganguly, B.; Broker, G. A.; Rogers, R. D.; Brechbiel, M.
ꢀ
W. J. Chem. Soc., Perkin Trans. 1 2002, 2080–2086. (f) Concellon, J. M.;
Riego, E.; Suarez, J. R.; Garcıa-Granda, S.; Dıaz, M. R. Org. Lett. 2004, 6,
´ ´
ꢀ
€
4499–4501. (g) Roper, S.; Franz, M. H.; Wartchow, R.; Martin, H.;
Hoffmann, R. J. Org. Chem. 2003, 68, 4944–4946. (h) Couty, F.; Evano,
G.; Prim, D. Tetrahedron Lett. 2005, 2253–57. (i) Baran, P. S.; Burns, N. Z.
J. Am. Chem. Soc. 2006, 128, 3908–3909. (j) D’hooghe, M.; Speybroeck, V.;
Van Nieuwenhove, A.; Waroquier, M.; De Kimpe, N. J. Org. Chem. 2007,
72, 4733–4740. (k) Anderson, J. C.; Chapman, H. A. Org. Biomol. Chem.
ꢀ
2007, 5, 2413–2422. (l) Gonzalez-Sabꢀn, J.; Gotor, V.; Rebolledo, F. J. Org.
Chem. 2007, 72, 1309–1314. (m) Hamilton, G. L.; Kanai, T.; Toste, F. D.
J. Am. Chem. Soc. 2008, 130, 14984–14986.
(2) (a) Ringdahl, B.; Mellin, C.; Ehlert, F. J.; Roch, M.; Rice, K. M.
J. Med. Chem. 1990, 33, 281–286. (b) Rink, S. M.; Solomon, M. S.; Taylor,
M. J.; Rajur, S. B.; McLaughlin, L. B.; Hopkins, P. B. J. Am. Chem. Soc.
1993, 115, 2551–2557. (c) Jones, G. B.; Mathews, J. E. Bioorg. Med. Chem.
Lett. 1995, 5, 93–96. (d) Noll, D. M.; Mason, T. M.; Miller, P. S. Chem. Rev.
2006, 106, 277–301.
(3) (a) Liu, Q.; Simms, M. J.; Boden, N.; Rayner, C. M. J. Chem. Soc.,
Perkin Trans. 1 1994, 1363–1365. (b) Katagiri, T.; Takahashi, M.; Fujiwara,
Y.; Ihara, H.; Uneyama, H. K. J. Org. Chem. 1999, 64, 7323–7329. (c)
D’hooghe, M.; Speybroeck, V. V.; Waroquier, M.; De Kimpe, N. Chem.
Commun. 2006, 1554–1556. (d) Kim, Y.; Ha, H.-J.; Yun, S. Y.; Lee, W. K.
Chem. Commun. 2008, 4363–4365.
(4) (a) Huh, N.; Thomson, C. M. Bioorg. Med. Chem. Lett. 1992, 2, 1551–
1554. (b) Weber, K.; Kuklinski, S.; Gmeiner, P. Org. Lett. 2000, 2, 647–649.
(5) (a) O’Brien, P.; Towers, T. D. J. Org. Chem. 2002, 67, 304–307. (b)
Couturier, C.; Blanchet, J.; Schlama, T.; Zhu, J. Org. Lett. 2006, 8, 2183–
2186.
(6) (a) Leonard, N.; Paukstelis, J. J. Org. Chem. 1965, 30, 821–825. (b)
Lillocci, C. J. Org. Chem. 1988, 53, 1733–1736. (c) Carter, C.; Fletcher, S.;
Nelson, A. Tetrahedron: Asymmetry 2003, 14, 1995–2004.
(7) Song, H. A.; Dadwal, M.; Lee, Y.; Mick, E.; Chong, H.-S. Angew.
Chem., Int. Ed. 2009, 48, 1328–1330.
DOI: 10.1021/jo901893n
r
Published on Web 12/02/2009
J. Org. Chem. 2010, 75, 219–221 219
2009 American Chemical Society