T. Panchal et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6813–6817
6817
Br
Cl
Br
Br
c
b
a
N
N
H
N
N
N
N
H
NO2
NO2
NH
Cl
Br
Br
O
O
N
N
N
e
d
N
N
N
H
NH
NH
OH
Scheme 1. Preparation of 1,5-disubstituted 1H-pyrrolo[2,3-c]pyridine (31). Reagents and conditions: (a) Br2, AcOH, 50 °C, (88%); (b) 3-bromo2-butene, Mg/THF, 0 °C (22%) (c)
2,6-dimethylbenzylamine, potassium carbonate 190 °C, (80%); (d) 2-pyridone, copper iodide, cesium carbonate, 1,2-dimethylethylamine, NMP, (31%). (e) (i) sodium hydride,
(ii) 2-[(2-bromoethyl)oxy]tetrahydro-2H-pyran, DMF, (iii) tosic acid, methanol (44%).
9. Lilljequist, L., Lindkvist, M., Nordberg, P., Pettersson, U. and Sebhatu, T. PCT Int.
improved CyP450 profiles. Compound 32 was of particular inter-
Appl. WO200558895, 2005.; (a) Abelo, A.; Andersson, M.; Holmberg, A. A.;
Karlsson, M. O. Eur. J. Pharm. Sci. 2006, 29, 91; (b) Andersson,K. SCI mtg,
London.
est as it showed a good balance of in vitro PK characteristics,
with H+/K+ATPase and cell potency and an overall in vitro profile
10. Simon, W. A. J. Pharm. Exp. Ther. 2007, 321, 866.
11. Postius, S; Simon, W-A; Grundler, G; Hanauer, G; Huber, R; Kromer, W; Sturm,
comparable to that of previously reported clinical candidates
such as (2) and (3).
E; Senn-Bilfinger, J. PCT Int. Appl. WO 2000017200, 2000.
The synthesis of (31) is representative of the approach taken
for the preparation of this class of compound and is outlined in
Scheme 1. Thus the commercially available 2,6-dichloro-3-nitro-
pyridine was converted to the corresponding dibromide which
was followed by Bartoli azaindole formation.32 Reaction with
2,6-dibromobenzylamine gave selective displacement of the C7
bromide. Displacement of the C5 bromide with pyridinone using
Ullman conditions,33 followed by N1 alkylation with 2-[(2-
bromoethyl)oxy]tetrahydro-2H-pyran then removal of the THP
protecting group to yield the desired compound (31).
12. Kaminski, J. J.; Bristol, J. A.; Puchalski, C.; Lovey, R. G.; Elliott, A. J.; Guzik, H.;
Solomon, D. M.; Conn, D. J.; Domalski, M. S.; Wong, S.-C.; Gold, E. H.;
Long, J. F.; Chiu, P. J. S.; Steinberg, M.; McPhail, A. T. J. Med. Chem. 1985,
28, 876.
13. Kaminski, J. J.; Hilbert, J. M.; Pramanik, B. N.; Solomon, D. M.; Conn, D. J.; Rizvi,
R. K.; Elliott, A. J.; Guzik, H.; Lovey, R. G.; Domalski, M. S.; Wong, S.-C.;
Puchalski, C.; Gold, E. H.; Long, J. F.; Chiu, P. J. S.; McPhail, A. T. J. Med. Chem.
1987, 30, 2031.
14. Kaminski, J. J.; Puchalski, C.; Solomon, D. M.; Rizvi, R. K.; Conn, D. J.; Elliott, A. J.;
Lovey, R. G.; Guzik, H.; Chiu, P. J. S.; Long, J. F.; McPhail, A. T. J. Med. Chem. 1989,
32, 1686.
15. Bamford, M J; Elliott, R L; Giblin, G M P; Naylor, A; Witherington, J; Panchal, T
A; Demont, E H. PCT Int. Appl. WO 2006100119, 2006.
In conclusion, evaluation of potency and in vitro DMPK profiles
of a range of bicyclic templates has shed light on SAR and key
requirements for potency. Although no clear correlations between
the range of 5,6 ring system templates and potencies could be de-
rived, SAR suggests weak basicity is required for activity and that a
heteroatom basic centre is best tolerated at positions 1 and 7 (gen-
eralised nomenclature).
The imidazo[1,2-a]pyridine template (5) and the 1H-pyrrol-
o[2,3-c]pyridine (18) were identified as being the most potent tem-
plates and we have demonstrated that the in vitro DMPK profile of
the parent 1H-pyrrolo[2,3-c]pyridine (18) can be improved by suit-
able substitution at C5 and N1 in order to modify pKa and lipophil-
icity. In particular the 1H-pyrrolo[2,3-c]pyridine compound (32)
has been identified as having a similar overall in vitro profile to
that of the reported clinical candidate imidazo[1,2-a]pyridine,
AZD-0865 (3). Further profiling and modifications of compound
(32) will be reported in a later publication.
16. Beil, W.; Hackbarth, I.; Sewing, K. F. Brit. J. Pharm. 1986, 88, 19.
17. Kaminski, J. J.; Bristol, J. A.; Puchalski, C.; Lovey, R. G.; Elliott, A. J.; Guzik, H.;
Solomon, D. M.; Conn, D. J.; Domalski, M. S. J. Med Chem. 1985, 28, 876.
18. Bristol, J A.; Lovey, R G. Imidazo[1,2-b]pyridazines. U.S. US 4464372, 1984.
19. Amin, K; Dahlstrom, M; Nordberg, P; Starke, I. PCT Int. Appl. WO 9928322,
1999.
20. (a) Kaminski, J. J.; Puchalski, C.; Solomon, D. M.; Rizvi, R. K.; Conn, D. J.; Elliott,
A. J.; Lovey, R. G.; Guzik, H.; Chiu, P. J. S.; Long, J. F.; McPhail, A. T. J. Med. Chem.
1989, 32, 1686; (b) Kaminski, J. J.; Wallmark, B.; Briving, C.; Andersson, B. M. J.
Med. Chem. 1991, 34, 533; (c) Kaminski, J. J.; Doweyko, A. M. J. Med. Chem. 1997,
40, 427.
21. Bailey, N.; Bamford, M. J.; Brissey, D.; Brookfield, J.; Demont, E.; Elliott, R.;
Garton, N.; Farre-Gutierrez; Hayhow, T.; Hutley, G.; Naylor, A.; Panchal, T. A.;
Seow, H.-X.; Spalding, D.; Takle, A. Bioorg. Med. Chem. Lett. 2009, 19, 3602.
22. Amin, K; Dahlstrom, M; Nordberg, P; Starke, I. PCT Int. Appl. WO 9837080,
1998.
23. Hasuoka, A; Arikawa, Y. PCT Int. Appl. WO 2006011670, 2006.
24. Chiesa, M. V; Palmer, A; Brehm, C; Grundler, G; Senn-Bilfinger, J; Postius, S;
Kromer, W; Zimmermann, P J; Buhr, Wilm. PCT Int. Appl. WO 2004074289,
2004.
25. Scarpignato, C.; Pelosini, I.; Di Mario, F. Digestive Dis. 2006, 24, 11.
26. CHI is a measure of lipophilicity by fast gradient HPLC. CHI log D is different
from octanol/water log D, it is more similar to a water/hexane partition, as it is
sensitive to H-bond donor groups. CHI is derived directly from a gradient
reversed phase chromatographic retention time.
References and notes
27. ACD labs v8. This predicts Àlog (acid–base ionisation constant(s)) for the
molecule at 25 °C and zero ionic strength. Parameters on which this calculation
is based are drawn from over 23,000 experimental values of literature
compounds under different temperatures and ionic strengths in aqueous
solution.
28. Clark, M.; Cramer, R. D., III; Jones, D. M.; Patterson, D. E.; Simeroth, P. E.
Tetrahedron Comput. Methodol. 1990, 3, 47.
29. Kaminski, J. J.; Doweyko, A. M. J. Med. Chem. 1997, 40, 427.
30. Gleeson, P. J. Med. Chem. 2008, 51, 817.
1. Sachs, G.; Shin, J. M.; Vagin, O.; lambrecht, N.; Yacubov, I.; Munson, K. J. Clin.
Gastroenterol. 2007, 41, S226.
2. Dajani, E. Z.; Klamut, M. J. Exp. Opin. Invest. Drugs 2000, 9(7), 1537.
3. Iwabuchi, H; Hagihara, M; Shibakawa, N; Matsunobu, K; Fujiwara, H. PCT Int.
Appl. WO 2001058901, 2001.
4. Kimura, T; Fujihara, Y; Shibakawa, N; Fujiwara, H; Itoh, E; Matsunobu, K;
Tabata, K; Yasuda, H. PCT Int. Appl. WO 9519980, 1995.
5. Hagihara, M; Shibakawa, N; Matsunobu, K; Fujiwara, H; Ito, K. PCT Int. Appl.
WO 2000077003, 2000.
6. Fernstroem, P; Hasselgren, G. PCT Int. Appl. WO 2005041961, 2005.
7. Amin, K; Dahlstrom, M; Nordberg, P; Starke, I. PCT Int. Appl. WO 9955706, 1999.
8. Andersson, K.; Aurell Holmberg, A.; Briving, C.; Holstein, B. Gastroenterology
2004, 126, A-56.
31. Kaminski, J. J.; Puchalski, C.; Solomon, Dl M.; Rizvi, R. K.; Conn, D. J.; Elliott, A. J.;
Lovey, R. G.; Guzik, H.; Chiu, P. J. S. J. Med. Chem. 1989, 32, 1686.
32. Bartoli, G. Tetrahedron Lett. 1989, 30, 2129.
33. Fanta, P. E. Synthesis 1974, 9.