J. Kasuga et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6595–6599
6599
dent in the range from 0.1
culated to be 68 nM. It is interesting to note that no apparent dose-
dependent antagonistic activity was seen in the case of PPAR or
PPAR activity elicited by TIPP-703 at up to 10 M (Fig. 5). This
l
M to 10
l
M, and the IC50 value was cal-
genes induced by 100 nM GW501516 to a level similar to that in
the vehicle control. These results indicate that the representive
compound 3a is an effective PPARd antagonist and can repress
these PPARd-regulated genes at the cellular level.
a
c
l
PPARd-selective antagonistic activity of 3a led us to speculate that
the specific interaction of the hydrophobic tail part of 3a might be
efficiently retained, even though the acidic head structure had
In summary, we have developed a novel PPARd-selective antag-
onist with 4-biphenylcarboxylic acid structure. We are currently
investigating the X-ray crystal structure of the complex of 4-biphe-
nylcarboxylic acid PPARd-selective antagonist with the PPARd LBD,
and also examining the mRNA repression profile in detail.
been changed from
a-ethyl phenylpropanoic acid structure (2) to
biphenylcarboxylic acid structure. The PPARd antagonistic activity
of 3c, 3d, 3e, and 3h was also assayed. Compounds 3c, 3d, and 3e
did not exhibit apparent antagonistic activity, while 3h exhibited
fairly potent antagonistic activity (IC50 = 10 nM).
References and notes
1. Gross, B.; Staels, B. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 687.
2. Mukherjee, R.; Jow, L.; Noonan, D.; McDonnell, D. P. J. Steroid Biochem. Mol. Biol.
1994, 51, 157.
3. Okuno, A.; Tamemoto, H.; Tobe, K.; Ueki, K.; Mori, Y.; Iwamoto, K.; Umesono,
K.; Akanuma, Y.; Fujiwara, T.; Horikoshi, H.; Yazaki, Y.; Kadowaki, T. J. Clin.
Invest. 1998, 101, 1354.
4. Braissant, O.; Wahli, W. Endocrinology 1998, 39, 2748.
5. Osada, S.; Tsukamoto, T.; Takiguchi, M.; Mori, M.; Osumi, T. Genes Cells 1997, 2,
315.
6. Tanaka, T.; Yamamoto, J.; Iwasaki, S.; Asaba, H.; Hamura, H.; Ikeda, Y.;
Watanabe, M.; Magoori, K.; Ioka, R. X.; Tachibana, K.; Watanabe, Y.; Uchiyama,
Y.; Sumi, K.; Iguchi, H.; Ito, S.; Doi, T.; Hamakubo, T.; Naito, M.; Auwerx, J.;
Yanagisawa, M.; Kodama, T.; Sakai, J. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
15924.
7. Lee, C. H.; Olson, P.; Hevener, A.; Mehl, I.; Chong, L. W.; Olefsky, J. M.; Gonzalez,
F. J.; Ham, J.; Kang, H.; Peters, J. M.; Evans, R. M. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 3444.
8. Tan, N. S.; Michalik, L.; Desvergne, B.; Wahli, W. J. Biol. Chem. 2005, 280, 18163.
9. Tan, N. S.; Michalik, L.; Di-Po, N.; Ng, C. Y.; Mermod, N.; Roberts, A. B.;
Desvergne, B.; Wahli, W. EMBO J. 2004, 23, 4211.
10. Burdick, A. D.; Bility, M. T.; Girroir, E. E. Cell. Signalling 2007, 19, 1163.
11. Shearer, B. G.; Steger, D. J.; Way, J. M.; Stanley, T. B.; Lobe, D. C.; Grillot, D. A.;
Iannone, M. A.; Lazar, M. A.; Willson, T. M.; Billin, A. N. Mol. Endocrinol. 2008,
22, 523.
12. Kasuga, J.; Nakagome, I.; Aoyama, A.; Sako, K.; Ishizawa, M.; Ogura, M.;
Makishima, M.; Hirono, S.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. 2007,
15, 5177.
To further characterize the 4-biphenylcarboxylic acid derivative
as a PPARd-selective antagonist, we examined its repressive effect
on representative PPARd-responsive genes having a peroxisome
proliferator responsive element (PPRE) in the promoter region at
the cellular level, using human hepatocellular carcinoma Huh-7
cells (Fig. 6). Carnitine palmitoyl acyl-CoA transferase 1A (CPT1A),
and HMG-CoA synthase 2 (HMGCS2) were selected for monitoring,
as the human genes were reported to possess PPRE in the promoter
region and to be regulated by PPARd.15 CPT1A is the key enzyme in
carnitine-dependent transport across the mitochondrial inner
membrane and deficiency results in a decreased rate of fatty acid
b-oxidation. HMGCS2 is a potential regulatory enzyme in the path-
way that converts acetyl-CoA to ketone bodies. This enzyme con-
denses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA,
which is the substrate for HMG-CoA reductase. Defects in HMGCS2
cause HMG-CoA synthase deficiency, which leads to severe
hypoketotic hypoglycemia, mild hepatomegaly, or fatty liver.
We first investigated the effects of GW501516. As indicated in
Figure 6, when Huh-7 cells were treated with 100 nM
GW501516, a sufficient concentration to induce subtype-selective
transactivation activity, expression of the two mRNAs was aug-
mented. These results indicated that PPARd is functionally active
in Huh-7.
13. Oyama, T.; Toyota, K.; Waku, T.; Hirakawa, Y.; Nagasawa, N.; Kasuga, J.;
Hashimoto, Y.; Miyachi, H.; Morikawa, K. Acta Crystallogr., Sect. D 2009, 65, 786.
14. Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. 2005, 13, 5080.
15. Kasuga, J.; Yamasaki, D.; Ogura, K.; Shimizu, M.; Sato, M.; Makishima, M.; Doi,
T. Y.; Hashimoto, Y.; Miyachi, H. Bioorg. Med. Chem. Lett. 2008, 18, 1110.
Treatment with 1
lM 3a, a concentration sufficient to inhibit
PPARd, attenuated the expression of both CPT1A and HMGCS2