E. Cini et al. / Tetrahedron Letters 50 (2009) 7159–7161
7161
4. Byk, G.; Cohen-Ohana, M.; Raichman, D. Biopolymers 2006, 84, 274–282;
Rajamohan Reddy, P.; Balraju, V.; Madhavan, G. R.; Banerji, B.; Iqbal, J.
Tetrahedron Lett. 2003, 44, 353–356.
Table 1). In some cases the solvent was changed from CH2Cl2 to
DMF (or a mixture CH2Cl2/DMF), as the starting peptide was not
soluble in CH2Cl2 alone at millimolar concentration. The only lim-
5. Davies, J. S. J. Pept. Sci. 2003, 9, 471–501.
6. Sewald, N.; Jakubke, H.-D. Peptides: Chemistry and Biology; Wiley-VCH:
Weinheim, 2002.
7. Lampariello, L. R.; Piras, D.; Rodriquez, M.; Taddei, M. J. Org. Chem. 2003, 68,
7893–7895; Falorni, M.; Giacomelli, G.; Nieddu, F.; Taddei, M. Tetrahedron Lett.
1997, 38, 4663–4666.
itation was (as expected) the presence of one
D-amino acid in the
sequence. In fact, all -series amino acid sequence, such as tetra-
L
peptide 11, did not cyclise under described conditions (entry 14
in Table 1). Analogously no results were obtained even at higher
dilution.
In summary we found that it is possible to enhance the head-to-
tail cyclisation of tetra- (and higher oligo-) peptides under con-
trolled microwave dielectric heating shortening the time required
for the reaction, decreasing the amount of solvent and streamlining
the procedure for work-up and isolation.
8. Petrella, A.; D’Acunto, C. W.; Rodriquez, M.; Festa, M.; Tosco, A.; Bruno, I.;
Terracciano, S.; Taddei, M.; Gomez-Paloma, L. Eur. J. Cancer 2008, 44, 740–749;
Rodriquez, M.; Terracciano, S.; Cini, E.; Settembrini, G.; Bruno, I.; Bifulco, G.;
Taddei, M.; Gomez-Paloma, L. Angew. Chem., Int. Ed. 2006, 45, 423–427; Gomez-
Paloma, L.; Bruno, I.; Cini, E.; Khochbin, S.; Rodriquez, M.; Taddei, M.;
Terracciano, S.; Sadoul, K. ChemMedChem 2007, 2, 1511–1519.
9. The synthesis was performed using an automated microwave peptide
synthesizer (Liberty from CEM Corporation). The 2-chlorotrityl resin was
loaded with the first amino acid in DMF with a double coupling protocol at
23 W and 75 °C. Fmoc deprotection and HBTU/HOBT mediated couplings with
the other amino acids were both carried out in 5 min at 23 W and 75 °C. The
last amino acid introduced was N-FmocAhoda(OTBDMS) (Ahoda: 2-amino-9-
hydroxy-8-oxodecanoic acid). The resin was removed from the microwave
synthesizer and the tetrapeptide was cleaved from the support using AcOH/
TFE/DCM for 3 h at rt.
Acknowledgments
This work was financially supported by MIUR (Rome), within
PRIN project 2006.
10. Cyclic tetrapeptides are sufficiently small to be considered ‘druglike’ and have
been used in the search for novel bioactive molecules. Unfortunately their use
is limited by the short supply of the natural ones and by the difficulties in
synthesizing them: Norgren, A. S.; Búttner, F.; Prabpai, S.; Kongsaeree, P.;
Arvidsson, P. R. J. Org. Chem. 2006, 71, 6814; Cavelier-Frontin, F.; Pèpe, G.;
Verducci, J.; Siri, D.; Jacquier, R. J. Am. Chem. Soc. 1992, 114, 8885.
11. The crude product obtained form resin cleavage was dissolved in dry CH2Cl2
(4 Â 10À3 M) and to this solution, cooled to 0 °C, HATU (1.5 equiv) and DIEA
References and notes
1. Cemazar, M.; Craik, D. J. J. Pept. Sci. 2008, 14, 683–689. and references cited
therein; Sabatino, G.; Papini, A. M. Curr. Opin. Drug Disc. Dev. 2008, 11, 762–
770; Murray, J. K.; Gellman, S. H. Nat. Protocols 2007, 2, 624–631; See also:
Katritzky, A. R.; Haase, D. N.; Johnson, J. V.; Chung, A. J. Org. Chem. 2009, 74,
2028–2032.
(2 equiv) were added. The vial was inserted in the cavity of
a Discover
synthesizer (CEM Corporation) and heated at 75 °C (25 W power, max internal
pressure 100 psi) for two cycles of 10 min each (with a no irradiation interval
of 2 min). The solvent was evaporated and the product isolated by preparative
HPLC (Column Phenomenex C18, flow 1 mL/min, 40 °C, Solvent A: water with
0.1% TFA. Solvent B: MeCN. Gradien from 95/5 A/B to 0/100 A/B in 10 min).
2. Rizzolo, F.; Sabatino, G.; Chelli, M.; Rovero, P.; Papini, A. M. Int. J. Pept. Res. Ther.
2007, 13, 203–208.
3. Galanis, A. S.; Albericio, F.; Grøtli, M. Biopolymers 2008, 92, 23–34; Van Dijk, M.;
Mustafa, K.; Dechesne, A. C.; Van Nostrum, C. F.; Hennik, W. E.; Rijkers, D. T. S.;
Liskamp, R. M. J. Biomacromolecules 2007, 8, 327–330; Monroc, S.; Feliu, L.;
Planas, M.; Bardají, E. Synlett 2006, 1311–1314; Campiglia, P.; Gomez-
Monterrey, I.; Longobardo, L.; Lama, T.; Novellino, E.; Grieco, P. Tetrahedron
Lett. 2004, 45, 1453–1456; Grieco, P.; Campiglia, P.; Gomez-Monterrey, I.;
Lama, T.; Novellino, E. Synlett 2003, 2216–2218.
12. For
a critical comparison between microwaves and conventional heating
technologies see: Bacsa, B.; Horváti, K.; Bõsze, S.; Andreae, F.; Kappe, C. O. J. Org.
Chem. 2008, 73, 7532–7541.
13. All linear peptides were prepared using the automated microwave peptide
synthesizer.