C O M M U N I C A T I O N S
Scheme 2
Acknowledgment. We thank the Ministry of Education, Culture,
Sports, Science, and Technology of Japan for the Grant-in-Aid for
Specially Promoted Research (19002008).
Supporting Information Available: Experimental details and
crystallographic data (CIF). This material is available free of charge
References
(1) Recent reviews: (a) Krause, N. In Modern Organocopper Chemistry; Wiley-
VCH: Weinheim, Germany, 2002. (b) Pe´rez, P. J.; D´ıaz-Requejo, M. M.
In ComprehensiVe Organometallic Chemistry III; Crabtree, R. H., Mingos,
D. M. P., Eds.; Elsevier: Oxford, U.K., 2007; Vol.2, Chapter 3, p 153. (c)
Lipshutz, B. H.; Yamamoto, Y. Chem. ReV. 2008, 108, 2793.
(2) Structurally characterized arylcopper compounds: (a) Lingnau, R.; Stra¨hle,
J. Angew. Chem., Int. Ed. Engl. 1988, 27, 436. (b) Nobel, D.; van Koten,
G.; Spek, A. L. Angew. Chem., Int. Ed. Engl. 1989, 28, 208. (c) Eriksson,
2a shows the monomer structure of 3a, where the lithium atom
closely interacts with the bromine atom and three THF mol-
ecules. The copper atom has a linear two-coordinate geometry
with a C-Cu-Br angle of 177.34(11)°. The relatively short
Cipso-Cu length [1.916(4) Å] lies in the range of those for 2c-2e
σ-bonded arylcopper species.2,3
¨
H.; Ortendahl, M.; Håkansson, M. Organometallics 1996, 15, 4823. (d)
Eriksson, H.; Håkansson, M. Organometallics 1997, 16, 4243. (e) Niemeyer,
M. Organometallics 1998, 17, 4649.
(3) Structurally characterized diarylcuprates: (a) van Koten, G.; Jastrzebski,
J. T. B. H.; Muller, F.; Stam, C. H. J. Am. Chem. Soc. 1985, 107, 697. (b)
Hope, H.; Olmstead, M. M.; Power, P. P.; Sandell, J.; Xu, X. J. Am. Chem.
Soc. 1985, 107, 4337. (c) Lorenzen, N. P.; Weiss, E. Angew. Chem., Int.
Ed. Engl. 1990, 29, 300. (d) Olmstead, M. M.; Power, P. P. J. Am. Chem.
Soc. 1990, 112, 8008. (e) Kronenburg, C. M. P.; Jastrzebski, J. T. B. H.;
Lutz, M.; Spek, A. L.; van Koten, G. Organometallics 2003, 22, 2312. (f)
Davies, R. P.; Hornauer, S.; White, A. J. P. Chem. Commun. 2007, 304.
(4) Structurally characterized heteroleptic organocuprates are known as follows:
Cyanocuprates: (a) Hwang, C.-S.; Power, P. P. J. Am. Chem. Soc. 1998,
120, 6409. (b) Boche, G.; Bosold, F.; Marsch, M.; Harms, K. Angew. Chem.,
Int. Ed. 1998, 37, 1684. (c) Kronenburg, C. M. P.; Jastrzebski, J. T. B. H.;
Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 1998, 120, 9688. (d) Eaborn,
C.; Hill, M. S.; Hitchcock, P. B.; Smith, J. D. Organometallics 2000, 19,
5780. (e) Hwang, C.-S.; Power, P. P. Organometallics 1999, 18, 697. Ami-
docuprates: (f) Davies, R. P.; Hornauer, S.; Hitchcock, P. B. Angew. Chem.,
Int. Ed. 2007, 46, 5191. (g) Haywood, J.; Morey, J. V.; Wheatley, A. E. H.;
Liu, C.-Y.; Yasuike, S.; Kurita, J.; Uchiyama, M.; Raithby, P. R.
Organometallics 2009, 28, 38.
Figure 2. Molecular structures of (a) 3a and (b) 4. Hydrogen atoms have
been omitted for clarity.
(5) Notable studies of solution structures: Gschwind, R. M. Chem. ReV. 2008,
108, 3029.
(6) (a) Corey, E. J.; Floyd, D.; Lipshutz, B. H. J. Org. Chem. 1978, 43, 3418.
(b) Malmberg, H.; Nilsson, M.; Ullenius, C. Tetrahedron Lett. 1982, 23,
3823. (c) Lipshutz, B. H.; Kozlowski, J. A.; Parker, D. A.; Nguyen, S. L.;
McCarthy, K. E. J. Organomet. Chem. 1985, 285, 437. (d) Bertz, S. H.;
Eriksson, M.; Miao, G.; Snyder, J. P. J. Am. Chem. Soc. 1996, 118, 10906.
(e) Lutz, C.; Jones, P.; Knochel, P. Synthesis 1999, 312. (f) Piazza, C.;
Knochel, P. Angew. Chem., Int. Ed. 2002, 41, 3263. (g) Yamanaka, M.;
Nakamura, E. J. Am. Chem. Soc. 2005, 127, 4697.
(7) (a) van Koten, G.; ten Hoedt, R. W. M.; Noltes, J. G. J. Org. Chem. 1977,
42, 2705. (b) ten Hoedt, R. W. M.; Noltes, J. G.; van Koten, G.; Spek,
A. L. J. Chem. Soc., Dalton Trans. 1978, 1800. (c) Lipshutz, B. H.;
Siegmann, K.; Garcia, E.; Kayser, F. J. Am. Chem. Soc. 1993, 115, 9276.
(d) Dubbaka, S. R.; Kienle, M.; Mayr, H.; Knochel, P. Angew. Chem., Int.
Ed. 2007, 46, 9093.
(8) The Eind group has been applied to the construction of highly coplanar
π-conjugated frameworks comprising SidSi and SidP double bonds: (a)
Fukazawa, A.; Li, Y.; Yamaguchi, S.; Tsuji, H.; Tamao, K. J. Am. Chem.
Soc. 2007, 129, 14164. (b) Li, B.; Matsuo, T.; Hashizume, D.; Fueno, H.;
Tanaka, K.; Tamao, K. J. Am. Chem. Soc. 2009, 131, 13222.
(9) Chang, V. S. C.; Kennedy, J. P. Polym. Bull. 1981, 4, 513.
(10) Reviews: (a) Ford, P. C.; Cariati, E.; Bourassa, J. Chem. ReV. 1999, 99,
3625. (b) Yam, V. W.-W.; Lo, K. K.-W. Chem. Soc. ReV. 1999, 28, 323.
Emissive arylcopper(I): (c) Yam, V. W.-W.; Lee, W.-K.; Cheung, K. K.;
Lee, H.-K.; Leung, W.-P. J. Chem. Soc., Dalton Trans. 1996, 2889.
(11) (a) Wehman, E.; van Koten, G.; Erkamp, C. J. M.; Knotter, D. M.;
Jastrzebski, J. T. B. H.; Stam, C. H. Organometallics 1989, 8, 94. (b)
Janssen, M. D.; Corsten, M. A.; Spek, A. L.; Grove, D. M.; van Koten, G.
Organometallics 1996, 15, 2810.
The subsequent reaction of 3a with LiCtCSiMe3 produced the
lithium aryl(alkynyl)cuprate 4 as colorless crystals containing two
molecules of THF in 47% yield. Figure 2b shows its discrete
monomeric nature, with the formation of a contact ion pair in which
the lithium atom is bonded to the two carbon atoms of the acetylene
unit. The geometry around the copper atom is slightly bent, having
a C-Cu-C angle of 165.40(11)°, probably as a result of steric
repulsion between the phenyl groups on the MPhind and the
coordinated THF molecules. The Cu-C(sp2) distance [1.942(2) Å]
is longer than that of Cu-C(sp) [1.871(3) Å]. The CtC distance
is 1.222(4) Å, and the ν(CtC) stretching vibration is observed at
1945 cm-1, which is comparable to that of 2. The mixed diorga-
nocuprate 4 was found to undergo the oxidative ligand-coupling
reaction7 by the action of chloranil7d to selectively afford the bulky
alkyne 5. This provides direct experimental evidence for oxidative
cross-coupling via the mixed diorganocuptrate arising from two
different organolithium or magnesium reagents.
We have shown that the size-controllable Rind ligands can
be used to generate isolable mixed diorganocuprates. In par-
ticular, while the chemical formula of MCuRR′ is generally
accepted in organocopper chemistry, complex 4, which was
realized by the significant bulkiness of the MPhind group,
represents to the best of our knowledge the first isolable
monomeric mixed diorganocuprate.
(12) Chui, S. S. Y.; Ng, M. F. Y.; Che, C.-M. Chem.sEur. J. 2005, 11, 1739.
(13) (a) Lo, W.-Y.; Lam, C.-H.; Yam, V. W.-W.; Zhu, N.; Cheung, K.-K.;
Fathallah, S.; Messaoudi, S.; Guennic, B. L.; Kahlal, S.; Halet, J.-F. J. Am.
Chem. Soc. 2004, 126, 7300. (b) Chan, C.-L.; Cheung, K.-L.; Lam, W. H.;
Cheng, E. C.-C.; Zhu, N.; Choi, S. W.-K.; Yam, V. W.-W. Chem.sAsian.
J. 2006, 1-2, 273.
JA9071964
9
J. AM. CHEM. SOC. VOL. 131, NO. 50, 2009 18025