ORGANIC
LETTERS
2010
Vol. 12, No. 2
364-366
Metal-Free Intramolecular Aziridination
of Alkenes Using Hypervalent Iodine
Based Sulfonyliminoiodanes
Robert M. Moriarty* and Sachin Tyagi
Department of Chemistry, UniVersity of Illinois at Chicago, 845 West Taylor Street,
Chicago, Illinois 60607-7061
Received November 23, 2009
ABSTRACT
Intramolecular aziridination of alkenyl sulfonyliminoiodanes occurs thermally in the absence of conventional metal catalysts such as Rh(II)
and Cu(II). In rigid molecular systems, conversions are near quantitative. The scope of the nonmetal process is related to the conformational
flexibility of the alkenyl sulfonyliminoiodane. A mechanism is proposed involving formal 2 + 2 cycloaddition of the RSO2NdIPh group to the
double bond followed by reductive elimination of PhI to yield the sulfonylaziridine. Green chemistry aspects of the process are highlighted.
Transition-metal-catalyzed cyclopropanation1 and aziridina-
tion2 of alkenes using hypervalent iodonium ylides and
iminoiodanes, respectively, have proven to be exceptionally
useful. Earlier we and others found that in the case of certain
intramolecular cyclopropanation processes, conventionally
effected using copper or rhodium catalysis, the reaction
occurred efficiently in the absence of these metals.1a,3
Originally treated as an undesirable complication in examples
using chirally modified copper catalysts for stereoselective
syntheses,1a but now viewed in a more current societal
context, the significance of this phenomenon requires re-
evaluation. Contemporary organic synthesis strives to be
metal free.4 General environmental awareness, i.e., green
chemistry, and more specifically concerns around the exigen-
cies of drug manufacture, i.e., pharmacovigilance, drive this
search for metal-free cognate reactions of synthetic processes
that are conventionally metal catalyzed.4a-d
(1) For reviews, see: (a) Mu¨ller, P Acc. Chem. Res. 2004, 37, 243. (b)
Doyle, M. P.; Forbes, D. C. Chem. ReV. 1998, 98, 911. (c) Zhdankin, V. V.;
Stang, P. J. Chem. ReV. 2002, 102, 2523. (d) Stang, P. J.; Zhdankin, V. V.
Chem. ReV. 1996, 96, 1123. (e) Moriarty, R. M. J. Org. Chem. 2005, 70,
2893.
Transition-metal-catalyzed aziridination5 of alkenes has
been largely developed on the basis of ArSO2NdIPh, and
apparently the deletion of metal from this type of reactions
(2) (a) Mu¨ller, P.; Fruit, C. Chem. ReV. 2003, 103, 2905. (b) Guthikonda,
K.; When, P. M.; Caliando, B. J.; DuBois, J. Tetrahedron 2006, 62, 11331.
(c) Dauban, P.; Dodd, R. H. Syn. Lett. 2003, 11, 1571. (d) First example of
Cu(I) or Cu(II) catalysis: Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J.
Org. Chem. 1991, 56, 6744. (e) Evans, D. A.; Bilodeau, M. T.; Faul, M. M.
J. Am. Chem. Soc. 1994, 116, 2742. (f) Rovis, T.; Evans, D. A. Prog. Inorg.
Chem. 2001, 50, 1. (g) Yamada, Y.; Yamamoto, T.; Okawara, M. Chem.
Lett. 1975, 361. (h) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem.
Soc. 1993, 115, 5326. Use of Rh(II): (i) Liang, J.-L.; Yuan, S.-X.; Chan,
P. W. H.; Che, C.-M. Org. Lett. 2002, 4, 4507.
(4) A recent example of this effort is the achievement of a copper-free
Sonogashira coupling: (a) Appukkuttan, P.; Dehaen, W.; Van der Eycken,
E. Eur. J. Org. Chem. 2003, 4713. (b) Leadbeater, N. E.; Marco, M.;
Tominack, B. J. Org. Lett. 2003, 5, 3919. (c) Luque, R.; Macquarrie, D. J.
Org. Bio. Chem. 2009, 7, 1627. For toxicity of copper, see: (d) Flemming,
C. A.; Trevors, J. T. Water Air Soil Poll. 1989, 44, 143. (e) Use of
organohypervalent iodine reagents as substitutes for Pb(IV), Tl(III), and
Hg(II) has been pursued (ref 1e). Use of the Dess-Martin reagent, IBX,
and PhIO as oxidants in place of Cr(VI) (ref 1c) and use of IBX as a
substitute for Se(IV) for conjugated carbonyl compound synthesis are
relevant advances. (f) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am.
Chem. Soc. 2000, 122, 75960. (g) A striking example of metal replacement
is the use of fullerene inplace of noble metals in catalytic hydrogenation:
Li, B.; Xu, Z. J. Am. Chem. Soc. 2009, 131, 16380.
(3) For the first example of this intramolecular thermal nonmetal process,
see: (a) Moriarty, R. M.; Prakash, O.; Vaid, R. K.; Zhao, L. J. Am. Chem.
Soc. 1989, 111, 6443. Erratum J. Am. Chem. Soc. 1990, 112, 1297. (b)
Gallos, J. K.; Koftis, T. V.; Massen, Z. S.; Dellios, C. C.; Mourtzinos, I. T.;
Coutouli-Argyropoulou, E.; Koumbis, A. E. Tetrahedron 2002, 58, 8043.
For a comparison of the intramolecular cyclopropanation using Cu(I), Rh(II),
and nonmetal, see: (c) Mu¨ller, P.; Bole˙a, C. Synlett 2000, 826. (d) Mu¨ller,
(5) (a) Evans, D. A.; Bilodeau, M. T.; Faul, M. M. J. Am. Chem. Soc.
1994, 116, 2742. (b) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem.
Soc. 1993, 115, 5326.
P.; Bole˙a, C. HelV. Chim. Acta 2001, 84, 1093
.
10.1021/ol9026655 2010 American Chemical Society
Published on Web 12/11/2009