24 Organometallics 2010, 29, 24–27
DOI: 10.1021/om9008907
C2-Symmetric Zirconium Bis(Amidate) Complexes with Enhanced
Reactivity in Aminoalkene Hydroamination
Alexander L. Reznichenko and Kai C. Hultzsch*
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,
610 Taylor Road, Piscataway, New Jersey 08854-8087
Received October 12, 2009
Summary: Binaphthalenedicarboxamide zirconium complexes
Group 4 metal-based catalyst systems have been studied
intensively in the hydroamination of alkynes and allenes,2i-o,6
exhibit significantly enhanced catalytic activity in aminoalk-
ene hydroamination reactions with respect to substrate scope
(substrates without gem-dialkyl activation; cyclization of
aminoheptenes), catalyst loading (as low as 0.5 mol %) and
reaction temperatures (as low as 70 °C) compared to previous
group 4 metal-based hydroamination catalyst systems.
(4) For asymmetric hydroamination reactions of aminoalkenes with
group 4 metal catalysts, see: (a) Knight, P. D.; Munslow, I.; O’Shaugh-
nessy, P. N.; Scott, P. Chem. Commun. 2004, 894. (b) Watson, D. A.; Chiu,
M.; Bergman, R. G. Organometallics 2006, 25, 4731. (c) Wood, M. C.;
Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew. Chem., Int.
Ed. 2007, 46, 354. (d) Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P.
Organometallics 2007, 26, 1729. (e) Gott, A. L.; Clarkson, G. J.; Deeth, R. J.;
Hammond, M. L.; Morton, C.; Scott, P. Dalton Trans. 2008, 2983. (f) Gott,
A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem. Commun. 2008, 1422.
(g) Xiang, L.; Song, H.; Zi, G. Eur. J. Inorg. Chem. 2008, 1135. (h) Zi, G.;
Wang, Q.; Xiang, L.; Song, H. Dalton Trans. 2008, 5930. (i) Zi, G.; Liu, X.;
Xiang, L.; Song, H. Organometallics 2009, 28, 1127.
The importance of nitrogen containing compounds in
biological systems and industrially relevant basic and
fine chemicals has sparked significant research efforts to
develop efficient synthetic protocols.1 One of the simplest
approaches, the hydroamination, has found significant
attention only in recent years with the development of more
efficient transition metal-based catalyst systems.2 The
addition of amine N-H functionalities to unsaturated
carbon-carbon bonds generates amines in a waste-free,
highly atom-economical manner starting from simple and
inexpensive precursors. An area of particular interest has
been the generation of new stereogenic center during the
hydroamination process, but the development of chiral
catalysts for the asymmetric hydroamination of alkenes
(AHA) has remained challenging.3-5
(5) For selected examples of asymmetric hydroamination reactions
with catalyst systems other than group 4 metals, see: (a) Giardello,
ꢀ
M. A.; Conticello, V. P.; Brard, L.; Gagne, M. R.; Marks, T. J. J. Am.
Chem. Soc. 1994, 116, 10241. (b) Dorta, R.; Egli, P.; Z€urcher, F.; Togni, A.
J. Am. Chem. Soc. 1997, 119, 10857. (c) Kawatsura, M.; Hartwig, J. F.
€
J. Am. Chem. Soc. 2000, 122, 9546. (d) Lober, O.; Kawatsura, M.; Hartwig,
J. F. J. Am. Chem. Soc. 2001, 123, 4366. (e) Douglass, M. R.; Ogasawara,
M.; Hong, S.; Metz, M. V.; Marks, T. J. Organometallics 2002, 21, 283.
(f) O'Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie, K. M.; Scott, P.
Chem. Commun. 2003, 1770. (g) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F.
Chem.;Eur. J. 2003, 9, 4796. (h) Hong, S.; Tian, S.; Metz, M. V.; Marks,
T. J. J. Am. Chem. Soc. 2003, 125, 14768. (i) Hong, S.; Kawaoka, A. M.;
Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878. (j) Kim, J. Y.; Living-
house, T. Org. Lett. 2005, 7, 1737. (k) Gribkov, D. V.; Hultzsch, K. C.;
Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748. (l) Horrillo Martínez, P.;
Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006, 2221. (m) Zhang, Z.;
Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2007, 129, 14148.
(n) Ogata, T.; Ujihara, A.; Tsuchida, S.; Shimizu, T.; Kaneshige, A.; Tomioka,
K. Tetrahedron Lett. 2007, 48, 6648. (o) Zhou, J.; Hartwig, J. F. J. Am.
Chem. Soc. 2008, 130, 12220. (p) Aillaud, I.; Collin, J.; Duhayon, C.;
Guillot, R.; Lyubov, D.; Schulz, E.; Trifonov, A. Chem.;Eur. J. 2008, 14,
2189. (q) Zhang, Z.; Lee, S. D.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009,
131, 5372.
(6) For selected examples of group 4 metal-catalyzed alkyne and
allene hydroamination reactions, see: (a) Walsh, P. J.; Baranger, A. M.;
Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. (b) Baranger, A. M.;
Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 2753. (c) Haak,
E.; Bytschkov, I.; Doye, S. Angew. Chem., Int. Ed. 1999, 38, 3389.
(d) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923.
(e) Shi, Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967.
(f) Cao, C.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 5011.
(g) Heutling, A.; Doye, S. J. Org. Chem. 2002, 67, 1961. (h) Tillack, A.;
Castro, I. G.; Hartung, C. G.; Beller, M. Angew. Chem., Int. Ed. 2002, 41,
2541. (i) Shi, Y.; Hall, C.; Ciszewski, J. T.; Cao, C.; Odom, A. L. Chem.
Commun. 2003, 586. (j) Zhang, Z.; Schafer, L. L. Org. Lett. 2003, 5, 4733.
(k) Khedkar, V.; Tillack, A.; Beller, M. Org. Lett. 2003, 5, 4767. (l) Li, C.;
Thomson, R. K.; Gillon, B.; Patrick, B. O.; Schafer, L. L. Chem. Commun.
2003, 2462. (m) Ackermann, L. Organometallics 2003, 22, 4367.
(n) Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003,
125, 11956. (o) Tillack, A.; Jiao, H.; Castro, I. G.; Hartung, C. G.; Beller, M.
Chem.;Eur. J. 2004, 10, 2409. (p) Hoover, J. M.; Petersen, J. R.; Pikul,
J. H.; Johnson, A. R. Organometallics 2004, 23, 4614. (q) Ayinla, R. O.;
Schafer, L. L. Inorg. Chim. Acta 2006, 359, 3097. (r) Zhang, Z.; Leitch,
D. C.; Lu, M.; Patrick, B. O.; Schafer, L. L. Chem.;Eur. J. 2007, 13, 2012.
(s) Hickman, A. J.; Hughs, L. D.; Jones, C. M.; Li, H.; Redford, J. E.;
Sobelman, S. J.; Kouzelos, J. A.; Johnson, A. R. Tetrahedron: Asymmetry
2007, 20, 1279.
*To whom correspondence should be addressed. E-mail: hultzsch@
rci.rutgers.edu.
(1) (a) Ricci, A. Modern Amination Methods; Wiley-VCH: Weinheim,
2000. (b) Ricci, A. Amino Group Chemistry: From Synthesis to the Life
Sciences; Wiley-VCH: Weinheim, 2008.
(2) For reviews on hydroamination, see: (a) Taube, R. In Applied
Homogeneous Catalysis, 1st ed.; Cornils, B., Herrmann, W. A., Eds.; VCH:
Weinheim, 1996; Vol. 1, p 507. (b) M€uller, T. E.; Beller, M. Chem. Rev.
1998, 98, 675. (c) M€uller, T. E.; Beller, M. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2,
p 316. (d) Brunet, J. J.; Neibecker, D. In Catalytic Heterofunctionalization
from Hydroamination to Hydrozirconation; Togni, A., Gr€utzmacher, H.,
Eds.; Wiley-VCH: Weinheim, 2001; p 91. (e) Seayad, J.; Tillack, A.;
Hartung, C. G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795. (f) Beller,
M.; Breindl, C.; Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel, O. R.;
Tillack, A.; Trauthwein, H. Synlett 2002, 1579. (g) Hartwig, J. F. Pure Appl.
Chem. 2004, 76, 507. (h) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37,
673. (i) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104. (j) Bytschkov, I.;
Doye, S. Eur. J. Org. Chem. 2003, 935. (k) Doye, S. Synlett 2004, 1653.
(l) Odom, A. L. Dalton Trans. 2005, 225. (m) Severin, R.; Doye, S. Chem.
Soc. Rev. 2007, 36, 1407. (n) M€uller, T. E.; Hultzsch, K. C.; Yus, M.;
Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. (o) Doye S. In Science of
Synthesis; Thieme: Stuttgart, 2009; Vol. 40a, p 241.
(3) For reviews on asymmetric hydroamination, see: (a) Roesky, P.
€
W.; Muller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708. (b) Hultzsch, K.
C. Adv. Synth. Catal. 2005, 347, 367. (c) Hultzsch, K. C. Org. Biomol.
Chem. 2005, 3, 1819. (d) Hultzsch, K. C.; Gribkov, D. V.; Hampel, F.
J. Organomet. Chem. 2005, 690, 4441. (e) Aillaud, I.; Collin, J.; Hanne-
douche, J.; Schulz, E. Dalton Trans. 2007, 5105. (f) Zi, G. Dalton Trans.
2009, 9101. (g) Reznichenko, A. L.; Hultzsch, K. C. In Chiral Amine
Synthesis: Methods, Developments and Applications; Nugent, T., Ed.;
Wiley-VCH: Weinheim, 2010, in press.
r
pubs.acs.org/Organometallics
Published on Web 12/08/2009
2009 American Chemical Society