6630
A. Sun et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6627–6631
Formation of the two isomers was reported to be reversible,
although the compounds appear to be relatively unstable. Com-
pared with the slow association of curcumin and GSH, the reaction
of either 1 or 2 with GSH is much faster. In addition, the latter are
stable, water-soluble, colorless powders of the bis-adducts 1-
(GSH)2 and 2-(GSH)2 with a potential for releasing drugs 1 and 2
by means of a reversible equilibrium (Scheme 1).
Reversible and competitive equilibria of GSH Michael addition to
curcumin analogs. It is common knowledge that Michael additions
are reversible reactions,32 yet the literature reveals very few inves-
tigations of thiol-mediated equilibria of this type.33 The reversibil-
ity of thiol addition to 1 was demonstrated by treatment of 1-
(GSH)2 with 2 in water at room temperature (Eq (1)):
as efficacious in their cell-kill capacity as the parents 1 and 2. Ana-
logs 1 and 1-(GSH)2 exhibit IC50 values of 1.5 M against MDA-MB-
435 breast cancer cells (Fig. 4a), while 2 and 2-(GSH)2 likewise
show similar IC50 values of 1.0 M (Fig. 4b).
l
l
In summary, thiol conjugates such as 1-(GSH)2 and 2-(GSH)2 are
easily prepared as stable, water-soluble, colorless solids with cyto-
toxic properties comparable to the unconjugated drugs 1 and 2.
The double GSH conjugates can be regarded as a class of pro-drugs
capable of releasing the active agents by means of a readily estab-
lished equilibrium (Scheme 1). While the thiol conjugates of 1 and
2 are in principle capable of existing as a complex mixture of
mono- and bis-GSH diastereoisomers in aqueous solution, we ex-
pect that certain isomers may well dominate in solution, perhaps
as single entities in some cases. Studies underway will explore
the relative bioactivity of other pyridone curcumin analogs, the
bio-effects of replacing GSH with cysteine-containing peptides,
effectiveness against other cell lines, the diastereomeric composi-
tion and the potential of the series as anti-cancer pro-drugs.
ð1Þ
Eq. 1. Reaction of 2 with 1-(GSH)2 in H2O.
The reaction was followed by LC/MS from 5 min to 2 days after
mixing 1-(GSH)2 and 2 in a molar ratio of 1:1. Analysis of the reac-
tion mixture by LC/MS after 5 min revealed only starting materials,
2 and 1-(GSH)2. After 8 h, LC/MS detected 1, 2-GSH and 2-(GSH)2
along with unreacted 2 and 1-(GSH)2. Extending the reaction per-
iod to 48 h gave no evidence of 2, only 1, 2-(GSH)2 and a small
amount of unreacted 1-(GSH)2. The Michael addition of the pyri-
dine analog 2 with glutathione was described above as an instan-
taneous reaction between them, while the corresponding
conjugation of 1 proved to be much slower (Scheme 1). Accord-
ingly, (Eq (1)) implies the retro-Michael addition of 1-(GSH)2
releasing free 1 and glutathione followed by 2’s capture of GSH
to deliver the corresponding mono- and bis-adducts. Thus, the com-
petition confirms that the cross-coupling of 2 with GSH is much
faster than 1.
Acknowledgments
This work was financially supported by the National Institutes
of Health (NIH) grants R21 CA82995-01A1 and U.S. Department
of Defense, the Division of U.S. Army DAMD17-00-1-0241 (to M.
Shoji) and 1 U54 HG003918 (to J. P. Snyder).
References and notes
1. Goel, A.; Kunnumakkara, A. B.; Bharat, B. A. Biochem. Pharmacol. 2008, 75, 787.
2. Bemis, D. L.; Katz, A. E.; Buttyan, R. Exp. Opin. Invest. Drugs 2006, 15, 1191.
3. Nonn, L.; Duong, D.; Peehl, D. M. Carcinogenesis 2006, 28, 1188.
4. Tomita, M.; Kawakami, H.; Uchihara, J. N.; Okudaira, T.; Masuda, M.; Takasu, N.;
Matsuda, T.; Ohta, T.; Tanaka, Y.; Ohshiro, K.; Mori, N. Int. J. Cancer 2006, 118,
765.
Comparison of the cytotoxic activity of 1, 2 and the corresponding
GSH conjugates. Treatment of MDA-MB-435 human breast cancer
cells separately with 1, 2, 1-(GSH)2 and 2-(GSH)2 under identical
conditions demonstrates that the GSH bis-conjugated analogs are
5. Jobin, C.; Bradham, C. A.; Russo, M. P.; Juma, B.; Narula, A. S.; Brenner, D. A.;
Sartor, R. B. J. Immunol. 1999, 163, 3474.
6. Shishodia, S.; Potdar, P.; Gariola, C. G.; Aggarwal, B. B. Carcinogenesis 2003, 24,
1269.
7. Aggarwal, B. B.; Shishodia, S. Biochem. Pharmacol. 2006, 71, 1397.
8. Sharma, R. A.; Gescher, A. J.; Steward, W. P. Eur. J. Cancer 2005, 41, 1955.
9. Dhillon, N.; Wolff, R. A.; Abbruzzese, J. L.; Hong, D. S.; Camacho, L. H.; Li, L.;
Braiteh, F. S.; Kurzrock, R. J. Clin. Oncol. 2006, 24, 14151 (Abstract).
10. Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. S. Planta
Med. 1998, 64, 353.
11. Safavy, A.; Raisch, K. P.; Mantena, S.; Sanford, L. L.; Sham, S. W.; Krishna, N. R.;
Bonner, J. A. J. Med. Chem. 2007, 50, 6284.
12. Adams, B. K.; Ferstl, E. M.; Davis, M. C.; Herold, M.; Kurtkaya, S.; Camalier, R. F.;
Hollingshead, M. G.; Kaur, G.; Sausville, E. A.; Rickles, F. R.; Snyder, J. P.; Liotta,
D. C.; Shoji, M. Bioorg. Med. Chem. 2004, 12, 3871.
13. Adams, B. K.; Cai, J.; Armstrong, J.; Herold, M.; Lu, Y.; Sun, A.; Snyder, J. P.;
Liotta, D. C.; Jones, D. P.; Shoji, M. Anticancer Drugs 2005, 16, 263.
14. Shoji, M. et al., unpublished results.
15. Kasinski, A. L.; Du, Y.; Thomas, S. L.; Zhao, J.; Sun, Shi-Y.; Khuri, F. R.; Wang, C.;
Shoji, M.; Sun, A.; Snyder, J. P.; Liotta, D. C.; Fu, H. Mol. Pharmacol. 2008, 74, 654.
16. Fry, D. W.; Bridges, A. J.; Denny, W. A.; Doherty, A.; Greis, K. D.; Hicks, J. L.;
Hook, K. E.; Keller, P. R.; Leopold, W. R.; Loo, J. A.; McNamara, D. J.; Nelson, J. M.;
Sherwood, V.; Smaill, J. B.; Trumpp-Kallmeyer, S.; Dobrusin, E. M. Proc. Natl.
Acad. Sci. 1998, 95, 12022.
17. Klutchko, S. R.; Zhou, H.; Winters, R. T.; Tran, T. P.; Bridges, A. J.; Althaus, I. W.;
Amato, D. M.; Elliott, W. L.; Ellis, P. A.; Meade, M. A.; Roberts, B. J.; Fry, D. W.;
Gonzales, A. J.; Harvey, P. J.; Nelson, J. M.; Sherwood, V.; Han, H.-K.; Pace, G.;
Smaill, J. B.; Denny, W. A.; Hollis, S. H. D. J. Med. Chem. 2006, 49, 1475.
18. (a) Dimmock, J. R.; Padmanilayam, M. P.; Puthucode, R. N.; Nazarali, A. J.;
Motaganahalli, N. L.; Zello, G. A.; Quail, J. W.; Oloo, E. O.; Kraatz, H.-B.; Prisciak,
J. S.; Allen, T. M.; Santos, C. L.; Balzarini, J.; De Clercq, E.; Manavathu, E. K. J.
Med. Chem. 2001, 44, 586; (b) Pati, H. N.; Das, U.; Quail, J. W.; Kawase, M.;
Sakagami, H.; Dimmock, J. R. Eur. J. Med. Chem. 2008, 43, 1.
19. Dimmock, J. R.; Smith, L. M.; Smith, P. J. Can. J. Chem. 1980, 58, 984.
20. Balendiran, G. K.; Dabur, R.; Fraser, D. Cell Biochem. Funct. 2004, 22, 343.
21. Garcia-Ruiz, C.; Mari, M.; Morals, A.; Colell, A.; Ardite, E.; Fernandez-Checa, J. C.
Hepatology 2000, 32, 56.
22. Alves, D.; Esser, D.; Broadbridge, R.; Beevers, A.; Chapman, C.; Winsor, C.;
Betley, J. J. Pept. Sci. 2003, 9, 221.
23. (a) Brois, J.; Pilot, J.; Barnum, H. J. Am. Chem. Soc. 1970, 92, 7629; (b) Hiskey, R.;
Li, C.; Vunnam, R. J. Org. Chem. 1975, 40, 3697; (c) Kamber, B. Helv. Chim. Acta
1973, 56, 1370; (d) Fotouhi, N.; Galakatos, N.; Kemp, D. J. Org. Chem. 1989, 54,
2803.
Figure 4. Dose–response curves for the treatment of MDA-MB-435 human breast
cancer cells with curcumin analogs and their GSH conjugates: (a) 1 and 1-(GSH)2;
(b) 2 and 2-(GSH)2.