C O M M U N I C A T I O N S
Scheme 2. Possible Mechanism for the Reaction
Jensen, M. D.; Kondakov, D. Y.; Wang, S. J. Am. Chem. Soc. 1994, 116,
8404. (c) Shaughnessy, K. H.; Waymouth, R. M. J. Am. Chem. Soc. 1995,
117, 5873. (d) Petros, R. A.; Camara, J. M.; Norton, J. R. J. Organomet.
Chem. 2007, 692, 4768. (e) Mark, S.; Gaidzik, N.; Doye, S.; Enders, M.
Dalton Trans. 2009, 4875.
(4) Reviews of Zr-catalyzed asymmetric carboalumination of alkenes: (a)
Negishi, E.; Tan, Z. Top. Organomet. Chem. 2005, 8, 139. (b) Negishi, E.;
Huo, S. Pure Appl. Chem. 2002, 74, 151. (c) Negishi, E.; Kondakov, D. Y.
Chem. Soc. ReV. 1996, 25, 417. Also see ref 2b.
(5) Reviews: (a) Ziementz, P. M.; Arndt, S.; Elvidge, B. R.; Okuda, J. Chem.
ReV. 2006, 106, 2404. (b) Lou, Y.; Li, X.; Hou, Z. J. Organomet. Chem.
2006, 691, 3114. (c) Arndt, S.; Okuda, J. AdV. Synth. Catal. 2005, 347,
339. (d) Gromada, F.; Carpentier, J.-F.; Mortreus, A. Coord. Chem. ReV.
2004, 248, 397. (e) Piers, W. E.; Emslie, D. J. H. Coord. Chem. ReV. 2002,
233-234, 131. (f) Hou, Z.; Wakatsuki, Y. Coord. Chem. ReV. 2002, 231,
1.
(6) Examples of olefin polymerization catalyzed by cationic half-sandwich
alkylscandium complexes: (a) Li, X.; Nishiura, M.; Hu, L.; Mori, K.; Hou,
Z. J. Am. Chem. Soc. 2009, 131, 13870. (b) Nishiura, M.; Mashiko, T.;
Hou, Z. Chem. Commun. 2008, 2019. (c) Zhang, H.; Luo, Y.; Hou, Z.
Macromolecules 2008, 41, 1064. (d) Li, X.; Nishiura, M.; Mori, K.;
Mashiko, T.; Hou, Z. Chem. Commun. 2007, 4137. (e) Luo, Y.; Nishiura,
M.; Hou, Z. J. Organomet. Chem. 2007, 692, 536. (f) Li, X.; Baldamus,
J.; Nishiura, M.; Tardif, O.; Hou, Z. Angew. Chem., Int. Ed. 2006, 45,
8184. (g) Li, X.; Hou, Z. Macromolecules 2005, 38, 6767. (h) Li, X.;
Baldamus, J.; Hou, Z. Angew. Chem., Int. Ed. 2005, 44, 962. (i) Luo, Y.;
Baldamus, J.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 13910.
(7) (a) Lauterwasser, F.; Hayes, P. G.; Bra¨se, S.; Piers, W. E.; Schafer, L. L.
Organometallics 2004, 23, 2234. (b) Tazelaar, C. G. J.; Bambirra, S.; Van
Leusen, D.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 2004,
23, 936. (c) Molander, G. A.; Rzasa, R. M. J. Org. Chem. 2000, 65, 1215.
(8) Similar examples of syn carbometalations directed by a tethered oxygen
atom: (a) Okada, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1996,
118, 6076. (b) Hojo, M.; Murakami, Y.; Aihara, H.; Sakuragi, R.; Baba,
Y.; Hosomi, A. Angew. Chem., Int. Ed. 2001, 40, 621. (c) Ryan, J.;
Micalizio, G. C. J. Am. Chem. Soc. 2006, 128, 2764. (d) Zhang, D.; Ready,
J. M. J. Am. Chem. Soc. 2006, 128, 15050.
unit to the TMS-substituted carbon atom to afford syn-15 (eq 1).
Because of its intrinsically unstable 1-silyl-1-metalloalkene struc-
ture,18 the initially formed syn-15 could undergo rapid isomerization
to give anti-15, which is stabilized by the intramolecular coordina-
tion of the oxygen atom to the Al atom.19
(9) TiCl4-promoted syn carboalumination of internal alkynyl alcohols: Ewing,
J. C.; Ferguson, G. S.; Moore, D. W.; Schultz, F. W.; Thompson, D. W. J.
Org. Chem. 1985, 50, 2124.
In summary, we have demonstrated that cationic alkylscandium
species such as that generated from the in situ reaction of 2a or 2b
with A can serve as a highly effective catalyst system for the regio-
and stereoselective carboalumination of internal akynes and alkenes
having an ether tether group. In most cases, the regio- and
stereoselectivity are unique and could not be achieved using
previously known catalysts. The resulting vinylalane species in the
carboalumination of alkynes can be easily transformed to the
corresponding tetrasubstituted alkenes through one-pot, stereospe-
cific coupling reactions with electrophiles. The oxidation of the
alkylalane species formed in the carboalumination of alkenes
selectively affords the corresponding secondary alcohols. Studies
of the use of the cationic rare-earth metal alkyls for other synthetic
organic reactions are in progress.
(10) Zr-catalyzed anti carboalumination of TMS-substituted alkynyl alcohols: Ma,
S.; Negishi, E. J. Org. Chem. 1997, 62, 784.
(11) Selected examples of anti carbometalation of alkynyl alcohol derivatives: (a)
Fallis, A. G.; Forgione, P. Tetrahedron 2001, 57, 5899. (b) Lu, Z.; Ma, S.
J. Org. Chem. 2006, 71, 2655. (c) Smil, D. V.; Souza, F. E. S.; Fallis,
A. G. Bioorg. Med. Chem. Lett. 2005, 15, 2057. (d) Lu, Z.; Ma, S. J. Org.
Chem. 2006, 71, 2655. (e) Flann, C.; Malone, T. C.; Overman, L. E. J. Am.
Chem. Soc. 1987, 109, 6097.
(12) Wipf, P.; Lim, S. Angew. Chem., Int. Ed. Engl. 1993, 32, 1068.
(13) In the Zr-catalyzed carboalumination reactions, an excess amount of Me3Al
(∼3.0 equiv) and a chlorinated solvent are usually required, and therefore,
removal of the unreacted Me3Al and the reactive solvent is necessary when
the resulting alkenylaluminum species are subsequently submitted to
coupling reactions with electrophiles. For examples, see: (a) Okukado, N.;
Negishi, E. Tetrahedron Lett. 1978, 19, 2357. (b) Ireland, R. E.; Wipf, P.
J. Org. Chem. 1990, 55, 1425.
(14) Ribe, S.; Kondru, R. K.; Beratan, D. N.; Wipf, P. J. Am. Chem. Soc. 2000,
122, 4608.
(15) The reaction of (Z)-8d or (E)-8d afforded 9d as a similar inseparable mixture
of two diastereomers. Oxidation of these alcohols gave the corresponding
ketone as the sole product in high yield, which shows that the methylalu-
mination proceeded in a regioselective manner (see the Supporting
Information). The lack of stereoselectivity may be due to the partial
involvement of a radical process in the oxidation reaction.
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Young Scientists (B) (20790026) and a Grant-in-
Aid for Scientific Research (S) (21225004) from JSPS.
(16) Studies of related species: (a) Zimmermann, M.; To¨rnroos, K. W.;
Anwander, R. Angew. Chem., Int. Ed. 2008, 47, 775. (b) Dietrich, H. M.;
Zapilko, C.; Herdweck, E.; Anwander, R. Organometallics 2005, 24, 5767.
(c) Anwander, R.; Klimpel, M. G.; Dietrich, H. M.; Shorokjov, D. J.;
Scherer, W. Chem. Commun. 2003, 1008. (d) Zhang, L.; Nishiura, M.; Yuki,
M.; Luo, Y.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 2642. (e) Robert,
D.; Spaniol, T. P.; Okuda, J. Eur. J. Inorg. Chem. 2008, 2801.
(17) Buchwald, S. L.; Nielsen, R. R. J. Am. Chem. Soc. 1989, 111, 2803.
(18) Intrinsic configurational instability of 1-silyl-1-aluminoalkenes: (a) Eish,
J. J.; Foxton, M. W. J. Org. Chem. 1971, 36, 3520. (b) Eish, J. J.;
Damasevitz, G. A. J. Org. Chem. 1976, 41, 2214. (c) Uchida, K.; Utimoto,
K.; Nozaki, H. J. Org. Chem. 1976, 41, 2215. (d) Hayami, H.; Oshima,
K.; Nozaki, H. Tetrahedron. Lett. 1984, 25, 4433.
Supporting Information Available: Experimental details and
compound characterization data. This material is available free of charge
References
(1) Reviews: (a) Knochel, P. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: New York, 1991;
Vol 4, Chapter 4.4, pp 865-911.
(2) Reviews of Zr-promoted carboalumination of alkynes: (a) Negishi, E. Pure
Appl. Chem. 1981, 53, 2333. (b) Negishi, E. Bull. Chem. Soc. Jpn. 2007,
80, 233.
(19) In the case of 1-silyl-1-aluminoalkenes, the coordination of a Lewis base
to aluminum is known to suppress further isomerization (see refs 18a-c).
(3) Selected examples of carboalumination of alkenes: (a) Dzhemilev, U. M.;
Vostrikova, U. S. J. Organomet. Chem. 1985, 285, 43. (b) Negishi, E.;
JA909126K
9
18268 J. AM. CHEM. SOC. VOL. 131, NO. 51, 2009