Organic Letters
Letter
secondary benzylic alcohols 7d and 7e in 53−67% isolated
yield (entries 4 and 5). Furthermore, Barbier-type reactions
with sterically demanding ketones such as norcamphor (2g)
and adamantanone (2h) were possible without further
optimization of the flow conditions, affording tertiary alcohols
7f−h in 59−85% isolated yield (entries 6−8). Using Barbier
conditions in batch led to 7g in only 40% isolated yield,13
which is significantly lower than the 85% yield obtained under
continuous flow conditions.
Authors
Niels Weidmann − Department Chemie, Ludwig-Maximilians-
̈
̈
̈
Universitat Munchen, 81377 Munchen, Germany
Johannes H. Harenberg − Department Chemie, Ludwig-
̈
̈
̈
Maximilians-Universitat Munchen, 81377 Munchen, Germany
Complete contact information is available at:
To further extend the scope of the lithiation protocol, we
applied this method to electron-deficient benzylic substrates
(Table 4). 2-Fluoro- and 2-chloro-substituted benzylic iodides
(8a and 8b) were converted to the corresponding lithiated
species 9a and 9b within 0.1 s. Trapping the intermediates of
type 9 with aldehyde 2a or 2c or ketone 2h gave the desired
alcohols 10a−d in 44−80% yield (entries 1−4). The presence
of a trifluoromethyl group at the meta position was also
tolerated, affording the secondary alcohol 10e in 64% isolated
yield after reaction with 2a using Barbier conditions (entry 5).
Having in mind that functionalization of heteroaromatics is
an important synthetic goal13 and that heterocycles are among
the most important structural motifs in current research
because of their wide range of bioactive properties and
frequent use in agrochemical and pharmaceutical chemistry,15
we turned our attention to heterobenzylic iodides (Scheme
3).16 We found that readily prepared 2-chloro-5-(iodomethyl)-
pyridine (11a)17 reacted instantaneously with tBuLi (2.5
equiv) to give the corresponding pyridylmethyllithium 12a. In
the presence of 2a, benzylic alcohol 13a was obtained in 92%
isolated yield, whereas no product was detected by GC−MS
under various batch conditions.13 6-Chloro-2-fluoro-3-
(iodomethyl)pyridine (11b) was lithiated at −78 °C within
0.1 s, affording the desired secondary alcohol 13b in 61% yield
via Barbier trapping with 2,6-dichlorobenzaldehyde (2i).
Furthermore, flow lithiation of 6-chloro-3-(iodomethyl)-2-
(methylthio)pyridine (11c) led to the corresponding pyr-
idylmethyllithium 12c, which was instantaneously quenched in
situ by various aromatic aldehydes to afford secondary alcohols
13c−e in 48−55% yield.18
Author Contributions
†N.W. and J.H.H. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
N.W. thanks the German Academic Scholarship Foundation
for a fellowship. We also thank the DFG and LMU for financial
support and Albemarle (Frankfurt) and BASF AG (Ludwig-
shafen) for generous gifts of chemicals.
REFERENCES
■
(1) (a) Clayden, J. Organolithiums: Selectivity for Synthesis; Baldwin,
J. E., Williams, R. M., Eds.; Pergamon Press: Oxford, U.K., 2002.
(b) Science of Synthesis, Volumes 8a,b; Snieckus, V., Majewski, M.,
Eds.; Georg Thieme Verlag: Stuttgart, Germany, 2005. (c) Whisler,
M. C.; Mac-Neil, S.; Snieckus, V.; Beak, P. Angew. Chem., Int. Ed.
2004, 43, 2206.
(2) (a) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. Angew.
Chem., Int. Ed. 2000, 39, 4414. (b) Goldfuss, B. Synthesis 2005, 14,
2271.
(3) (a) Nagaki, A.; Yamashita, H.; Hirose, K.; Tsuchihashi, Y.;
Yoshida, J.-I. Angew. Chem., Int. Ed. 2019, 58, 4027. (b) Pulis, A. P.;
Varela, A.; Citti, C.; Songara, P.; Leonori, D.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2017, 56, 10835. (c) Lutter, F. H.; Hofmayer, M. S.;
Hammann, J. M.; Malakhov, V.; Knochel, P. Generation and Trapping
of Functionalized Aryl- and Heteroarylmagnesium and -Zinc
Compounds. In Organic Reactions; Denmark, S. E., Ed.; John Wiley
& Sons: Hoboken, NJ, 2019; Vol. 100. (d) Skotnitzki, J.; Kremsmair,
A.; Keefer, D.; Gong, Y.; de Vivie-Riedle, R.; Knochel, P. Angew.
Chem., Int. Ed. 2020, 59, 320. (e) Skotnitzki, J.; Kremsmair, A.;
Knochel, P. Synthesis 2020, 52, 189. (f) Morozova, V.; Skotnitzki, J.;
Moriya, K.; Karaghiosoff, K.; Knochel, P. Angew. Chem., Int. Ed. 2018,
57, 5516. (g) Degennaro, L.; Nagaki, A.; Moriwaki, Y.; Romanazzi,
In summary, we have reported a convenient method for the
generation and efficient quenching of (hetero)benzylic lithium
species via an iodine−lithium exchange reaction on readily
available benzylic iodides using tBuLi as the exchange reagent.
The highly reactive (hetero)benzyl lithiums were trapped in
situ by carbonyl-containing electrophiles using Barbier
conditions in a commercially available continuous flow setup.
A general scale-up was possible by increasing the run time
without further optimization.
́
G.; DellAnna, M. M.; Yoshida, J.-i.; Luisi, R. Open Chem. 2016, 14,
377. (h) Dilauro, G.; Quivelli, A. F.; Vitale, P.; Capriati, V.; Perna, F.
M. Angew. Chem., Int. Ed. 2019, 58, 1799. (i) Ghinato, S.; Dilauro, G.;
Perna, F. M.; Capriati, V.; Blangetti, M.; Prandi, C. Chem. Commun.
2019, 55, 7741. (j) Dell’Aera, M.; Perna, F. M.; Vitale, P.; Altomare,
A.; Palmieri, A.; Maddock, L. C. H.; Bole, L. J.; Kennedy, A. R.; Hevia,
(4) (a) Comer, E.; Organ, M. G. J. Am. Chem. Soc. 2005, 127, 8160.
(b) Price, G. A.; Hassan, A.; Chandrasoma, N.; Bogdan, A. R.; Djuric,
S. W.; Organ, M. G. Angew. Chem., Int. Ed. 2017, 56, 13347.
(c) Comer, E.; Organ, M. G. Chem. - Eur. J. 2005, 11, 7223.
(d) Brodmann, T.; Koos, P.; Metzger, A.; Knochel, P.; Ley, S. V. Org.
Process Res. Dev. 2012, 16, 1102.
(5) (a) Nagaki, A.; Sasatsuki, K.; Ishiuchi, S.; Miuchi, N.; Takumi,
M.; Yoshida, J.-I. Chem. - Eur. J. 2019, 25, 4946. (b) Lee, H.-j.; Kim,
H.; Yoshida, J.-I.; Kim, D.-P. Chem. Commun. 2018, 54, 547. (c) Kim,
H.; Yonekura, Y.; Yoshida, J.-I. Angew. Chem., Int. Ed. 2018, 57, 4063.
(d) Kim, H.; Min, K.-I.; Inoue, K.; Im, D. J.; Kim, D.-P.; Yoshida, J.-I.
Science 2016, 352, 691. (e) Nagaki, A.; Tsuchihashi, Y.; Haraki, S.;
Yoshida, J.-I. Org. Biomol. Chem. 2015, 13, 7140.
ASSOCIATED CONTENT
■
sı
* Supporting Information
The Supporting Information is available free of charge at
General experimental procedures, detailed synthetic
procedures, and analytical data for all compounds
AUTHOR INFORMATION
■
Corresponding Author
Paul Knochel − Department Chemie, Ludwig-Maximilians-
̈
̈
̈
Universitat Munchen, 81377 Munchen, Germany;
D
Org. Lett. XXXX, XXX, XXX−XXX