F. Gao et al. / Tetrahedron 69 (2013) 5355e5366
5365
7. (a) Luxami, V.; Kumar, S. RSC Adv. 2012, 2, 8734; (b) Liu, B.; Wang, H.; Wang,
T.-S.; Bao, Y. Y.; Du, F. F.; Tian, J.; Li, Q. B.; Bai, R. K. Chem. Commun. 2012, 2867;
(c) Zhou, G.; Cheng, Y.-X.; Wang, L. X.; Jing, X. B.; Wang, F. S. Macromolecules
2005, 38, 2148; (d) Kaur, N.; Singh, N.; Cairns, D.; Callan, J. F. Org. Lett. 2009, 11,
2229; (e) Chu, Q.; Medetz, D. A.; Pang, Y. Chem. Mater. 2007, 19, 6421; (f)
Sumalekshmy, S.; Fahrni, C. J. Chem. Mater. 2011, 23, 483.
148.945, 150.648, 151.812, 159.283, 160.630. Elemental analysis:
C20H22N2O, C, 78.40 (78.51), H, 7.24 (7.15), N, 9.14 (9.05).
4.7. Molecular modeling
8. (a) Udhayakumari, D.; Saravanamoorthy, S.; Ashok, M.; Velmathi, S. Tetrahedron
Lett. 2011, 52, 4631; (b) Hu, R.; Feng, J.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Li, Y.;
Yang, G. Q. Angew. Chem., Int. Ed. 2010, 49, 4915; (c) Patil, V. S.; Padalkar, V. S.;
Phatangare, K. R.; Gupta, V. D.; Umape, P. G.; Sekar, N. J. Phys. Chem. A 2012, 116,
536; (d) Chen, W. H.; Xing, Y.; Pang, Y. Org. Lett. 2011, 13, 1362; (e) Helal, A.; Kim,
H. S. Tetrahedron 2010, 66, 7097.
Gaussian 03 program package was utilized for molecular mod-
eling. All calculations were performed with 6-31G** basis set. The
geometry optimization in the ground electronic state (S0) of pho-
totautomers of the title molecules was performed with HF (Har-
treeeFock) method and at DFT (density functional theory) level
using B3LYP method both,46e48 while CIS (single-excitation con-
figuration interaction) was employed to optimize the geometries in
the first singlet excited state (S1) of the phototautomers of the
molecules studied in this work. HF method is regarded as the cor-
responding equivalent to CIS method to optimize S0 and S1, and
thus the geometric parameters in S0 and S1 could be compared.49
It is well-known that although CIS method can basically produce
reliable geometries and force-fields, it normally yields too high
excitation energies as ca. 1 eV.46 Hence, DFT and TDDFT (time-de-
pendence DFT) methods were used to obtain the energies at HF and
CIS optimized geometries for S0 and S1 states, respectively, such as
DFT//HF or TDDFT//CIS (represented as single-point calculation//
optimization method), which aims to remove the errors, and to
introduce the dynamic electron correlation. We also performed
TDDFT//HF and TDDFT//CIS to analyze the absorption spectra and
the emission spectra for enol and keto tautomers of the molecules.
9. (a) Kwon, J. E.; Park, S. Y. Adv. Mater. 2011, 23, 3615; (b) Nandhikonda, P.; Heagy,
M. D. Chem. Commun. 2010, 8002.
10. (a) Kim, S. H.; Park, S.; Kwon, J. E.; Park, S. Y. Adv. Funct. Mater. 2011, 21, 644; (b)
Kang, J. G.; Kim, H. J.; Jeong, Y. K.; Nah, M. K.; Park, C.; Bae, Y. J.; Lee, S. W.; Kim,
I. T. J. Phys. Chem. B 2010, 114, 3791.
11. (a) Morales, A. R.; Schafer-Hales, K. J.; Yanez, C. O.; Bondar, M. V.; Przhonska, O. V.;
Marcus, A. I.;Belfield, K. D. ChemPhysChem 2009,10, 2073; (b) Dyrager, C.; Friberg, A.;
Dahlen, K.; Friden-Saxin, M.; Borjesson, K.; Wilhelmsso, L. M.; Smedh, M.; Grotli, M.;
Luthman, K. Chem.dEur
. J. 2009, 15, 9417.
^
12. (a) Oliveira, F. F. D.; Santos, D. C. B.; Lapis, A. A. M.; Correa, J. R.; Gomes, A. F.;
Gozzo, F. C.; Moreira, P. F.; Oliveira, V. C. D.; Quina, F.-H.; Neto, B. A. D. Bioorg.
Med. Chem. Lett. 2010, 20, 6001; (b) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev.
2013, 113, 192.
13. (a) Yu, W. S.; Cheng, C.-C.; Cheng, Y. P. J. Am. Chem. Soc. 2003, 125, 10800; (b)
Chen, C. L.; Lin, C. W.; Hsieh, C. C. J. Phys. Chem. A 2009, 113, 205.
14. (a) Chen, K. Y.; Hsieh, C. C.; Cheng, Y. M. Chem. Commun. 2006, 4395; (b) Chen,
K. Y.; Cheng, Y. M.; Lai, C. H. J. Am. Chem. Soc. 2007, 129, 4534.
15. Ortiz-Sanchez, J. M.; Gelabert, R.; Moreno, M.; Lluch, J. M. J. Phys. Chem. A 2006,
110, 4649.
16. Guo, Z. Q.; Chen, W. Q.; Duan, X. M. Dyes Pigments 2012, 92, 619.
17. (a) Hu, R.; Li, S. Y.; Zeng, Y.; Chen, J. P.; Wang, S. Q.; Li, Y.; Yang, G. Q. Phys. Chem.
Chem. Phys. 2011, 13, 2044; (b) Qian, Y.; Li, S. Y.; Zhang, G. Q.; Wang, Q.; Wang, S.
Q.; Xu, H. J.; Li, C. Z.; Li, Y.; Yang, G. Q. J. Phys. Chem. B 2007, 111, 5861.
18. Kim, S.; Chang, D. W.; Park, S. Y. Macromolecules 2002, 35, 2748.
19. Ohshima, A.; Momotake, A.; Nagahata, R.; Arai, T. J. Phys. Chem. A 2005, 109, 9731.
20. Tian, Y. Q.; Chen, C. Y.; Yang, C. C.; Young, A. C.; Jang, S. H.; Chen, W. C.; Jen, A. K.
Y. Chem. Mater. 2008, 20, 1977.
21. (a) Huang, C.; Sartin, M. M.; Cozzuol, M.; Siegel, N.; Barlow, S.; Perry, J. W.;
Marder, S. R. J. Phys. Chem. A 2012, 116, 4305; (b) Getmanenko, Y. A.; Hales, J.-M.;
Balu, M.; Fu, J.; Zojer, E.; Kwon, O.; Mendez, J.; Thayumanavan, S.; Walker, G.;
Zhang, Q.; Bunge, S. D.; Bredas, J. L.; Hagan, D. J.; Van Stryland, E. W.; Barlow, S.;
Marder, S. R. J. Mater. Chem. 2012, 22, 4371.
Acknowledgements
We thank financial support from CSTC2012jjB50007 and
CSTC2010BB0216. F.G. thanks the warm encouragements from the
Ministry of Education, China (NCET-10-0876). We appreciate Fun-
damental Research Funds for the Central Universities (CDJZR
10220006). We always thank the support from National Science
Foundation of China and Key Laboratory of Photochemical Con-
version and Optoelectronic Materials, TIPC, Chinese Academy of
Sciences.
22. (a) Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N. J. Am.
Chem. Soc. 2007, 129, 2669; (b) Adronov, A.; Frechet, J. M. J.; He, G.-S.; Kim, K.-S.;
Chung, S. J.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 2838.
23. Dichtel, W. R.; Serin, J. M.; Edder, C.; Frechet, J. M. J.; Matuszewski, M.; Tan, L. S.;
Ohulchanskyy, T. Y.; Prasad, P. N. J. Am. Chem. Soc. 2004, 126, 5380.
24. Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine,
L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J. Q.;
Supplementary data
€
Rockel, H.; Rumi, M.; Wu, X. L.; Marder, S. R.; Perry, J. W. Nature 1999, 398, 51.
25. Zhou, W. H.; Kuebler, S. M.; Braun, K. L.; Yu, T. Y.; Cammack, J. K.; Ober, C. K.;
Figs. S1eS24 and Tables S1eS4 containing 1H NMR, one- and
two-photon spectra, molecular modeling. This information is
available free of charge via the internet. Supplementary data as-
sociated with this article can be found in the online version, at
Perry, J. W.; Marder, S. R. Science 2002, 296, 1106.
26. (a) Ziolek, M.; Kubicki, J.; Maciejewski, A.; Naskre˛cki, R.; Grabowska, A. Phys.
Chem. Chem. Phys. 2004, 6, 4682; (b) Jankowska, J.; Rode, M. F.; Sadlej, J.; So-
bolewski, A. L. ChemPhysChem 2012, 13, 4287.
27. Yamaguchi, M.; Yamaguchi, R. Biochem. Pharmacol. 1986, 35, 773.
28. (a) Elisabeth, M. W. M. D.; Evers, T. H.; Dekkers, L. M.; Meijer, E. W.; Klomp, L. W. J.;
Merkx, M. J. Am. Chem. Soc. 2007, 129, 34945; (b) Elisabeth, M. W. M. D.; Dekkers,
L. M.; Spijker, K.; Meijer, E. W.; Klomp, L. W. J.; Merkx, M. J. Am. Chem. Soc. 2006,
128, 10754; (c) Wu, Y. K.; Peng, X. J.; Guo, B. C.; Fan, J.-L.; Zhang, Z. C.; Wang, J. Y.;
Cui, A. J.; Gao, Y. L. Org. Biomol. Chem. 2005, 3,1387; (d) Zhang, Y.; Guo, X. F.; Si, W.
X.; Jia, L. H.; Qian, X. H. Org. Lett. 2008, 10, 473; (e) Wu, J.; Liu, W.; Ge, J.; Zhang, H.;
Wang, P. Chem. Soc. Rev. 2011, 40, 3483.
29. (a) Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. Angew. Chem.
2003, 115, 3104; (b) Helal, A.; Rashid, M. H. O.; Choi, C. H.; Kim, H.-S. Tetrahe-
dron 2012, 68, 647; (c) Kuang, G. C.; Allen, J. R.; Baird, M. A.; Nguyen, B. T.;
Zhang, L.; Morgan, T. J.; Zhu, L. Inorg. Chem. 2011, 50, 10493; (d) Xu, Y.-Q.; Liu,
Q.; Dou, B.-R.; Wright, B.; Wang, J. Y.; Pang, Y. Adv. Healthcare Mater. 2012, 1,
485; (e) Xue, L.; Li, G.-P.; Zhu, D. J.; Liu, Q.; Jiang, H. Inorg. Chem. 2012, 51, 10842.
30. (a) Huang, H. Tetrahedron 1997, 53, 16341; (b) Hojo, M.; Sakuragi, R.; Murakami,
Y.; Baka, Y.; Hosomi, A. Organometallics 2000, 19, 4941.
References and notes
1. (a) Tang, K. C.; Chang, M. J.; Lin, T. Y.; Pan, H. A.; Fang, T. C.; Chen, K. Y.; Hung, W. Y.;
Hsu, Y. H.; Chou, P. T. J. Am. Chem. Soc. 2011, 133, 17738; (b) Basaric, N.; Doslic, N.;
Ivkovic, J.; Wang, Y. H.; Malis, M.; Wan, P. Chem.dEur. J. 2012, 18, 10617.
2. (a) Li, M. D.; Yeung, C. S.; Guan, X. G.; Ma, J.; Li, W.; Ma, C. S.; Phillips, D. L. Chem.
dEur. J. 2011, 17, 10935; (b) Mutai, T.; Tomoda, H.; Ohkawa, T.; Yabe, Y.; Araki, K.
Angew. Chem., Int. Ed. 2008, 47, 9522; (c) Gao, F.; Ye, X.; Li, H.; Zhong, X.; Wang,
Q. ChemPhysChem 2012, 13, 1313.
3. (a) Li, G. Y.; Chu, T. S. Phys. Chem. Chem. Phys. 2011, 13, 20766; (b) Kenfack, C. A.;
Klymchenko, A. S.; Duportail, G.; Burger, A.; Mely, Y. Phys. Chem. Chem. Phys.
2012, 14, 8910; (c) Zhao, J. Z.; Ji, S. M.; Chen, Y. H.; Guo, H. M.; Yang, P. Phys.
Chem. Chem. Phys. 2012, 14, 8803.
31. Enriquez, M. M.; Fuciman, M.; LaFountain, A. M.; Wagner, N. L.; Birge, R. R.;
Frank, H. A. J. Phys. Chem. B 2010, 114, 12416.
ꢁ
4. (a) Deperasinska, I.; Gryko, D. T.; Karpiuk, E.; Kozankiewicz, B.; Makarewicz, A.;
Piechowska, J. J. Phys. Chem. A 2012, 116, 2109; (b) Ma, J.; Zhao, J. Z.; Yang, P.;
Huang, D. D.; Zhang, C.-S.; Li, Q. T. Chem. Commun. 2012, 9720; (c) Phatangare,
K. R.; Gupta, V. D.; Tathe, A. B.; Padalkar, V. S.; Patil, V. S.; Ramasami, P.; Sekar, N.
Tetrahedron 2013, 69, 1767; (d) Tasior, M.; Hugues, V.; Blanchard-Desce, M.;
Gryko, D. T. Chem. Asian J. 2012, 7, 2656.
32. Bushuka, S.; Douglas, W.; Kalvinkovskayaa, Y.; Klapshinac, L.; Rubinova, A.;
Bushuka, B.; Stupaka, A. J. Lumin. 2003, 105, 81.
33. (a) Wu, Y.; Peng, X.; Fan, J.; Gao, S.; Tian, M.; Zhao, J.; Sun, S. J. Org. Chem. 2007,
72, 62; (b) Klymchenko, A. . S.; Kenfack, C.; Duportail, G.; Mely, Y. J. Chem. Sci.
2007, 119, 83.
5. Klymchenko, A. S.; Duportail, G.; Mely, Y.; Demchenko, A. P. Proc. Natl. Acad. Sci.
U.S.A. 2003, 100, 11219.
6. (a) Lim, S. J.; Seo, J.; Park, S. Y. J. Am. Chem. Soc. 2006, 128, 1454; (b) Rana, D. K.;
Dhar, S.; Sarkar, A.; Bhattacharya, S. C. J. Phys. Chem. A 2011, 115, 9169; (c) Ba-
saric, N.; Doslic, N.; Ivkovic, J.; Wang, Y.-H.; Veljkovic, J.; Mlinaric-Majerski, K.;
Wan, P. J. Org. Chem. 2013, 78, 1811.
34. Bellucci, M. A.; Coker, D. F. J. Chem. Phys. 2012, 136, 194505.
35. (a) Wang, C. K.; Macak, P.; Luo, Y.; Agren, H. J. Chem. Phys. 2001, 114, 9813;
(b) Albota, M.; Beljonne, D.; Bredas, J.; Fu, J.; Heikal, A. A.; Hess, S. E.; Kogeij,
T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rokel, H.;
Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.; Xu, C. Science 1998, 281,
1653.