Organic Letters
Letter
For Ru(II), see: (g) Oi, S.; Tanaka, Y.; Inoue, Y. Organometallics 2006,
25, 4773.
(8) (a) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010,
327, 315. (b) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed.
2010, 49, 6169. (c) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Soc. 2010, 132, 14137. (d) Gigant, N.; Backvall, J.-E. Org. Lett. 2014, 16,
̈
This work was supported partly by ACT-C from the Japan
Science and Technology Agency (JST, Japan), Grants-in-Aid for
Scientific Research (Nos. 26102004 and 25105714) from the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT, Japan), and a Grant-in-Aid for Research Activity Start-
up (No. 15H06201) from Japan Society for the Promotion of
Science (JSPS, Japan). We are grateful to Umicore for generous
support in supplying the rhodium complex.
4432. (e) Wang, G.-W.; Zhou, A.-X.; Li, S.-X.; Yang, S.-D. Org. Lett.
2014, 16, 3118. (f) Jiang, H.; Yang, W.; Chen, H.; Li, J.; Wu, W. Chem.
Commun. 2014, 50, 7202.
(9) (a) Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Xu, C.; Zhu, J. J. Am. Chem.
Soc. 2013, 135, 468. (b) Davis, T. A.; Hyster, T. K.; Rovis, T. Angew.
Chem., Int. Ed. 2013, 52, 14181. In the rhodium(III)-catalyzed and
pyridinyl group-directed oxidative olefination of diarylmethanols with
styrenes via β-carbon elimination, the use of vinylcyclohexane and 1-
octene instead of styrenes afforded the corresponding allylation
products. See: (c) Li, H.; Li, Y.; Zhang, X.-S.; Chen, K.; Wang, X.;
Shi, Z.-J. J. Am. Chem. Soc. 2011, 133, 15244.
(10) Shibata, Y.; Tanaka, K. Angew. Chem., Int. Ed. 2011, 50, 10917.
(11) (a) Hoshino, Y.; Shibata, Y.; Tanaka, K. Adv. Synth. Catal. 2014,
356, 1577. (b) Fukui, M.; Hoshino, Y.; Satoh, T.; Miura, M.; Tanaka, K.
Adv. Synth. Catal. 2014, 356, 1638. (c) Takahama, Y.; Shibata, Y.;
Tanaka, K. Chem. - Eur. J. 2015, 21, 9053.
(12) Modification of cyclopentadienyl ligands has a beneficial effect on
reactivity in rhodium(III) catalyses. For selected very recent examples,
see: (a) Piou, T.; Rovis, T. Nature 2015, 527, 86. (b) Romanov-
Michailidis, F.; Sedillo, K. F.; Neely, J. M.; Rovis, T. J. Am. Chem. Soc.
2015, 137, 8892. (c) Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136,
11292. (d) Wodrich, M. D.; Ye, B.; Gonthier, J. F.; Corminboeuf, C.;
Cramer, N. Chem. - Eur. J. 2014, 20, 15409. (e) Neely, J. M.; Rovis, T. J.
Am. Chem. Soc. 2014, 136, 2735.
(13) For selected recent examples of the transition-metal-catalyzed and
heteroarene-directed sp2 C−H bond functionalization, see: (a) Zhou,
B.; Hu, Y.; Wang, C. Angew. Chem., Int. Ed. 2015, 54, 13659. (b) Kim, J.;
Park, S.-W.; Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2015, 137, 13448.
(c) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 8551.
(d) Chen, K.; Li, Z.-W.; Shen, P.-X.; Zhao, H.-W.; Shi, Z.-J. Chem. - Eur.
J. 2015, 21, 7389. (e) Ebe, Y.; Nishimura, T. J. Am. Chem. Soc. 2015, 137,
5899. (f) Yang, W.; Ye, S.; Fanning, D.; Coon, T.; Schmidt, Y.;
Krenitsky, P.; Stamos, D.; Yu, J.-Q. Angew. Chem., Int. Ed. 2015, 54,
2501. (g) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400. See also
refs 4b, 4d, 5b, 6a−d, and 7g.
REFERENCES
■
(1) For selected recent reviews of the transition-metal-catalyzed
allylation of arenes, see: (a) Pigge, F. C. Synthesis 2010, 2010, 1745. For
selected examples, see: (b) Sekine, M.; Ilies, L.; Nakamura, E. Org. Lett.
2013, 15, 714. (c) Selim, K. B.; Nakanishi, H.; Matsumoto, Y.;
Yamamoto, Y.; Yamada, K.-i.; Tomioka, K. J. Org. Chem. 2011, 76, 1398.
(d) Sarkar, S. M.; Uozumi, Y.; Yamada, Y. M. A. Angew. Chem., Int. Ed.
2011, 50, 9437. (e) Ohmiya, H.-H.; Makida, Y.; Li, D.; Tanabe, M.;
Sawamura, M. J. Am. Chem. Soc. 2010, 132, 879. (f) Selim, K. B.;
Matsumoto, Y.; Yamada, K.-i.; Tomioka, K. Angew. Chem., Int. Ed. 2009,
48, 8733.
(2) For selected recent reviews of the transition-metal-catalyzed sp2
C−H bond functionalization, see: (a) Gandeepan, P.; Cheng, C.-H.
Chem. - Asian J. 2015, 10, 824. (b) Topczewski, J. J.; Sanford, M. S. Chem.
Sci. 2015, 6, 70. (c) Yan, G.; Borah, A. J.; Yang, M. Adv. Synth. Catal.
2014, 356, 2375. (d) Yoshikai, N. Bull. Chem. Soc. Jpn. 2014, 87, 843.
(e) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
(f) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369. (g) Arockiam,
P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (h) Li, B.-
J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588. (i) Colby, D. A.; Tsai, A. S.;
Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (j) Engle, K.
M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
(3) For selected recent examples, see: (a) Bae, S.; Jang, H.; Jung, H.;
Joo, J. J. Org. Chem. 2015, 80, 690. (b) Fan, S.; Chen, F.; Zhang, X.
Angew. Chem., Int. Ed. 2011, 50, 5918.
(4) For selected recent examples, see: (a) Sharma, S.; Han, S.; Oh, Y.;
Mishra, N.; Han, S.; Kwak, J.; Lee, S.; Jung, Y.; Kim, I. J. Org. Chem. 2016,
81, 2243. (b) Jo, H.; Han, S.; Park, J.; Choi, M.; Han, S. H.; Jeong, T.;
Lee, S.-Y.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Tetrahedron 2016, 72, 571.
(c) Park, J.; Mishra, N. K.; Sharma, S.; Han, S.; Shin, Y.; Jeong, T.; Oh, J.
S.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2015, 80, 1818.
(d) Wang, H.; Schroder, N.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52,
5386. (e) Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. Org. Lett.
2011, 13, 540.
(5) For selected recent examples, see: (a) Cera, G.; Haven, T.;
Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 1484. (b) Asako, S.;
Norinder, J.; Ilies, L.; Yoshikai, N.; Nakamura, E. Adv. Synth. Catal. 2014,
356, 1481. (c) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013,
135, 17755.
(6) For selected recent examples, see: (a) Suzuki, Y.; Sun, B.; Sakata,
K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2015,
54, 9944. (b) Gensch, T.; Vasquez-Cespedes, S.; Yu, D.-G.; Glorius, F.
́ ́
Org. Lett. 2015, 17, 3714. (c) Moselage, M.; Sauermann, N.; Koeller, J.;
Liu, W.; Gelman, D.; Ackermann, L. Synlett 2015, 26, 1596. (d) Yu, D.-
(14) The reactions of 1-phenyl-1H-1,2,4-triazole, 4-phenylpyrimidine,
and 2-phenyloxazole with 3a were also examined under the same
conditions as Scheme 2. However, unfortunately, no reactions were
observed for the former two substrates and the last reaction was sluggish
to give the allylation product in <10% yield.
(15) The formation of significant amounts of diallylated products 5ea
and 5fa might arise from diminished steric repulsion between two ortho
substituents on the heteroarene and benzene rings due to the absence of
the ortho hydrogen in heteroarenes 2e and 2f.
(16) In the reactions other than 2e and 2f, diallylated products 5 were
generated in less than 10%.
(17) For examples of the allylation by the Mizoroki−Heck type
reactions involving β-hydride elimination away from the arene ring, see:
(a) Karabelas, K.; Westerlund, C.; Hallberg, A. J. Org. Chem. 1985, 50,
3896. (b) Arcadi, A.; Chiarini, M.; Marinelli, F.; Berente, Z.; Kollar, L.
Org. Lett. 2000, 2, 69. (c) Rosenblum, S. B.; Huynh, T.; Afonso, A.;
Davis, H. R., Jr. Tetrahedron 2000, 56, 5735. (d) Arcadi, A.; Chiarini, M.;
Marinelli, F.; Berente, Z.; Kollar, L. Eur. J. Org. Chem. 2001, 2001, 3165.
(e) Mino, T.; Shindo, H.; Kaneda, T.; Koizumi, T.; Kasashima, Y.;
Sakamoto, M.; Fujita, T. Tetrahedron Lett. 2009, 50, 5358.
G.; Gensch, T.; de Azambuja, F.; Vas
Am. Chem. Soc. 2014, 136, 17722.
́ ́
quez-Cespedes, S.; Glorius, F. J.
(18) Kim, J.; Park, S.-W.; Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2015,
137, 13448.
(7) For Re(II), see: (a) Kuninobu, Y.; Ohta, K.; Takai, K. Chem.
Commun. 2011, 47, 10791. For Ni(II), see: (b) Aihara, Y.; Wuelbern, J.;
Chatani, N. Bull. Chem. Soc. Jpn. 2015, 88, 438. (c) Cong, X.; Li, Y.; Wei,
Y.; Zeng, X. Org. Lett. 2014, 16, 3926. (d) Aihara, Y.; Chatani, N. J. Am.
Chem. Soc. 2013, 135, 5308. For Cu(II), see: (e) Makida, Y.; Ohmiya,
H.; Sawamura, M. Angew. Chem., Int. Ed. 2012, 51, 4122. (f) Yao, T.;
Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2011, 50, 2990.
D
Org. Lett. XXXX, XXX, XXX−XXX