42
H.-J. Chuang et al. / Inorganic Chemistry Communications 18 (2012) 38–42
[2] (a) W. Gao, D. Cui, X. Liu, Y. Zhang, Y. Mu, Rare-earth metal bis(alkyl)s supported
3.17 (2H, t, J=6.8 Hz, NCH2CH2), 2.68 (2H, t, J=6.8 Hz, NCH2CH2), 2.27 (6H,
s, N(CH3)2), 1.39 (3H, s, CH3C=N), -0.79 (6H, s, Al(CH3)2). 13C NMR (CDCl3,
by a quinolinyl anilido-imine ligand: synthesis and catalysis on living poly-
merization of ε-caprolactone, Organometallics 27 (2008) 5889–5893;
(b) W. Yao, Y. Mu, A. Gao, W. Gao, L. Ye, Bimetallic anilido-aldimine Al or Zn
complexes for efficient ring-opening polymerization of ε-caprolactone,
Dalton Trans. 1 (2008) 3199–3206;
ppm):
δ 173.71, 164.30, 161.81, 160.84, 148.55, 137.28, 132.21, 130.16,
128.76, 127.86, 121.00, 116.78, 116.57 (Ar and Py), 101.65 (C=C-NH), 55.21
(NHCH2CH2), 46.78 (NHCH2CH2), 45.52 (N(CH3)2), 14.97 (N=C-CH3), -8.56
(Al(CH3)2).
(c) Y.-H. Tsai, C.-H. Lin, C.-C. Lin, B.-T. Ko, Tridentate anilido-aldimine magne-
sium and zinc complexes as efficient catalysts for ring-opening polymeriza-
tion of ε-caprolactone and L-lactide, J. Polym. Sci. Part A: Polym. Chem. 47
(2009) 4927–4936;
(d) Y.-C. Liu, C.-H. Lin, B.-T. Ko, R.-M. Ho, Ring-opening polymerization of β-
butyrolactone catalyzed by efficient magnesium and zinc complexes derived
from tridentate anilido-aldimine ligand, J. Polym. Sci. Part A: Polym. Chem.
48 (2010) 5339–5347.
[11] [(OMeL)AlMe2] (3): Yield: 0.73 g (78 %). Anal. calc. for C24H30AlClN4O2: N, 11.95;
C, 61.47; H, 6.45. Found: N, 11.76; C, 61.50; H, 6.85%. 1H NMR (CDCl3, ppm): δ
7.94 (2H, d, J=8.8 Hz, ArH), 7.34 (2H, d, J=8.8 Hz, ArH), 7.13 (2H, d, J=8.4
Hz, ArH), 7.04 (2H, d, J=8.4 Hz, ArH), 3.88 (3H, s, ArOCH3), 3.21 (2H, t, J=6.8
Hz, NCH2CH2), 2.67 (2H, t, J=6.8 Hz, NCH2CH2), 2.27 (6H, s, N(CH3)2), 1.41
(3H, s, CH3C=N), -0.79 (6H, s, Al(CH3)2). 13C NMR (CDCl3, ppm): δ 174.82,
160.74, 160.10, 149.00, 137.36, 129.80, 128.65, 128.34, 127.06, 120.84, 114.62
(Arand Py), 101.76 (C=C-NH), 55.30 (NHCH2CH2), 55.04 (OCH3), 46.56 (NHCH2CH2),
44.84 (N(CH3)2),14.93 (N=C-CH3), -8.54 (Al(CH3)2).
[3] (a) C.-Y. Li, C.-Y. Tsai, C.-H. Lin, B.-T. Ko, Synthesis, structural characterization
and reactivity of aluminium complexes supported by benzotriazole phenox-
ide ligands: air-stable alumoxane as an efficient catalyst for ring-opening
polymerization of L-lactide, Dalton Trans. 1 (2011) 1880–1887;
[12] [(tBuL)AlMe2] (4): Yield: 0.80 g (81 %). Anal. calc. for C27H36AlClN4O: N, 11.32;
C, 65.51; H, 7.33. Found: N, 11.21; C, 66.25; H, 7.75%. 1H NMR(CDCl3, ppm):
δ7.95 (2H, d, J =8.8Hz, ArH), 7.54 (2H, d, J =8.4Hz ArH), 7.35 (2H, d, J =9.2Hz,
ArH), 7.13 (2H, d, J =8.6Hz, ArH), 3.21 (2H, t, J =13.6Hz, NCH2CH2), 2.67 (2H,
(b) Y.-E. Tai, C.-Y. Li, C.-H. Lin, Y.-C. Liu, B.-T. Ko, Y.-S. Sun, Efficient catalysts for
ring-opening polymerization of ε-caprolactone and β-butyrolactone: syn-
thesis and characterization of zinc complexes based on benzotriazole phen-
oxide ligands, J. Polym. Sci. Part A: Polym. Chem. 49 (2011) 4027–4036;
(c) J.-Y. Li, C.-Y. Li, W.-J. Tai, C.-H. Lin, B.-T. Ko, Synthesis and structural charac-
terization of zinc complexes supported by amino-benzotriazole phenoxide
ligands: efficient catalysts for ring-opening polymerization of ε-caprolactone
and β-butyrolactone, Inorg. Chem. Commun. 14 (2011) 1140–1144.
[4] H.-Y. Chen, H.-Y. Tang, C.-C. Lin, Ring-opening polymerization of lactides initiated
by zinc alkoxides derived from NNO-tridentate ligands, Macromolecules 39 (2006)
3745–3752;
t,
J =13.2Hz, NCH2CH2), 2.26 (6H, s, N(CH3)2), 1.37 (9H, s, CH3C=N),
1.33(3H, s, ArC(CH3)3), -0.79 (6H, s, Al(CH3)2). 13C NMR(CDCl3, ppm):
δ175.13, 160.78, 152.79, 149.00, 137.41, 133.29, 129.98, 128.72, 126.13, 125.28,
121.00 (Ar and Py), 101.65 (C=C-NH), 55.28 (NHCH2CH2), 46.68 (NHCH2CH2), 44.92
(N(CH3)2), 34.87 (C(CH3)3), 31.29(C(CH3)3), 14.58 (N=C-CH3), -8.58 (Al(CH3)2) ppm.
[13] Crystal data for complex 2: C23H27AlClFN4O, M=456.92, triclinic, space group
P-1, a=10.2603(4) Å, b=10.5288(3) Å, c=12.3331(5) Å, α=101.806(3)°
β=113.387(4)° γ=99.609(3)° V=1150.44(7) Å3, T=110(2)K, Z=2, Dc=1.319
Mg/m3, F(000)=480, 2θmax=58.50° 12583 reflections collected, 5427 unique
[R(int)=0.0279], no. of observed reflections 3575 (I >2σ(I)); R1=0.0450,
wR2=0.1250.
(b) W.-C. Hung, Y. Huang, C.-C. Lin, Efficient initiators for the ring-opening poly-
merization of L-lactide: synthesis and characterization of NNO-tridentate
Schiff-base zinc complexes, J. Polym. Sci. Part A: Polym. Chem. 46 (2008)
6466–6476.
[14] Crystal data for complex 3: C24H30AlClN4O2, M=468.95, triclinic, space group
P-1, a=9.6850(5) Å, b=10.9437(5) Å, c=12.1709(5) Å, α=107.185(4)°
β=91.980(4)° γ=103.589(4)° V=1190.37(10) Å3, T=110(2)K, Z=2,
Dc=1.308 Mg/m3, F(000)=496, 2θmax=58.88° 16126 reflections collected,
5741 unique [R(int)=0.0182], no. of observed reflections 4670 (I >2σ(I));
R1=0.0389, wR2=0.1321.
[15] R.-C. Yu, C.-H. Hung, J.-H. Huang, H.-Y. Lee, J.-T. Chen, Four- and five-coordinate
aluminum ketiminate complexes: synthesis, characterization, and ring-opening
polymerization, Inorg. Chem. 41 (2002) 6450–6455.
[16] C.-Y. Tsai, C.-Y. Li, C.-H. Lin, B.-H. Huang, B.-T. Ko, Reactions of 4-methylidene-
bis(1-phenyl-3-methylpyrazol-5-one) with trimethylaluminum: synthesis, struc-
ture and catalysis for the ring-opening polymerization of ε-caprolactone, Inorg.
Chem. Comm. 14 (2011) 271–275.
[5] H.-Y. Tang, H.-Y. Chen, J.-H. Huang, C.-C. Lin, Synthesis and structural characteri-
zation of magnesium ketiminate complexes: efficient initiators for the ring-
opening polymerization of L-lactide, Macromolecules 40 (2007) 8855–8860.
[6] Y. Huang, W.-C. Hung, M.-Y. Liao, T.-E. Tsai, Y.-L. Peng, C.-C. Lin, Ring-opening
polymerization of lactides initiated by magnesium and zinc complexes based
on NNO-tridentate ketiminate ligands: activity and stereoselectivity studies, J.
Polym. Sci. Part A: Polym. Chem. 47 (2009) 318–2329.
[7] H.-S. Lee, S.-Y. Ahn, H.-S. Huh, Y. Ha, Introduction of new ancillary ligands to the
iridium complexes having 2,3-diphenylquinolinato ligands for OLED, J. Ogano-
met. Chem. 694 (2009) 3325–3330.
[8] Crystal data for OMeL-H: C22H25ClN4O2, M=412.91, Monoclinic, space group
C2/c, a=21.6291(4) Å, b=16.5309(3) Å, c=11.8297(2) Å, α=90.00°
β=101.407(2)° γ=90.00° V=4146.14(13) Å3, T=110(2)K, Z=8, Dc=1.323
Mg/m3, F(000)=1744, 2θmax=58.68° 18209 reflections collected, 5096 unique
[R(int)=0.0241], no. of observed reflections 3853 (I >2σ(I)); R1=0.0524,
wR2=0.1536.
[17] C.-T. Chen, H.-J. Weng, M.-T. Chen, C.-A. Huang, K.-F. Peng, Synthesis, characteri-
zation, and catalytic application of aluminum anilido-oxazolinate complexes, Eur.
J. Inorg. Chem. (2009) 2129–2135.
[18] K.-F. Peng, C.-T. Chen, Synthesis and catalytic application of aluminium anilido-
pyrazolate complexes, Dalton Trans. (2009) 9800–9806.
[19] Y.-C. Liu, B.-T. Ko, C.-C. Lin, A highly efficient catalyst for the “Living” and “Immor-
tal” polymerization of ε-caprolactone and L-lactide, Macromolecules 34 (2001)
6196–6201.
[20] The Mn (GPC) value is multiplied by a factor of 0.58, giving the actual Mn of the
polylactide, see: (a). J. Baran, A. Duda, A. Kowalski, R. Szymanski, S. Penczek,
Intermolecular chain transfer to polymer with chain scission. General treatment
and determination of kp/ktr in L, L-lactide polymerization, Macromol. Rapid Com-
mun. 18 (1997) 325–333;
[9] [(HL)AlMe2] (1): Yield: 0.67 g (76 %). Anal. calc. for C23H28AlClN4O: N, 12.76; C,
62.94; H, 6.43. Found: N, 12.30; C, 64.77; H, 6.99%. 1H NMR (CDCl3, ppm): δ 7.96
(2H, d, J=8.8 Hz, ArH), 7.53 (3H, m, ArH), 7.35 (2H, d, J=8.8 Hz, ArH), 7.22 (2H,
d, J=6.4 Hz, ArH), 3.18 (2H, t, J=6.8 Hz, NCH2CH2), 2.67 (2H, t, J=6.8 Hz,
NCH2CH2), 2.26 (6H, s, N(CH3)2), 1.35 (3H, s, CH3C=N), -0.78 (6H, s, Al(CH3)2).
13C NMR (CDCl3, ppm): δ 174.69, 160.86, 148.83, 137.38, 136.28, 129.38, 129.04,
128.74, 128.22, 125.77, 121.00 (Ar and Py), 101.50 (C=C-NH), 55.28 (NHCH2CH2),
44.93 (NHCH2CH2), 46.72 (N(CH3)2), 14.72 (N=C-CH3), -8.58 (Al(CH3)2).
[10] [(FL)AlMe2] (2): Yield: 0.73 g (80 %). Anal. calc. for C23H27AlClFN4O: N, 12.66;
C, 60.46; H, 5.96. Found: N, 12.22; C, 60.35; H, 5.53%. 1H NMR (CDCl3, ppm): δ
7.94 (2H, d, J=8.8 Hz, ArH), 7.36 (2H, d, J=8.8 Hz, ArH), 7.25 (4H, m, ArH),
(b) T. Biela, A. Duda, S. Penczek, Control of Mn, Mw/Mn, end-groups, and kinetics
in living polymerization of cyclic esters, Macromol. Symp. 183 (2002) 1–10.