We thank Prof. Dr R. Boese and D. Blaser for collection of
¨
part of the X-ray data and acknowledge the DFG for financial
support.
Notes and references
z Crystallographic data for HB[NH(DIPP)]2: C24H37BN2, M =
364.37, monoclinic, space group P21,
a = 10.2052(9), b =
10.3128(9), c = 11.5048(11) A, b = 108.727(5)1, U = 1146.71(18) A3,
Z
= 2, Dc = 1.055 g , F(000) = 400, m(Mo-Ka) =
cmꢀ3
0.060 mmꢀ1, 1.9 r y r 30.11, 14 398 reflections measured, 6317
unique (Rint = 0.054) were used in all calculations, R1 = 0.0474
[I 4 2s(I), 5329 reflections] and wR2 = 0.1133 (all data); max/min.
residual electron density: 0.17/ꢀ0.21.
Crystallographic data for [(DIPP)nacnacMgBH4]2: C58H90B2Mg2N4,
M = 913.58, monoclinic, space group P21/n, a = 14.3266(11),
b
=
13.9025(8),
c
=
15.1584(13) A,
b
=
106.287(6)1,
U = 2898.0(4) A3, Z = 2, Dc = 1.047 g cmꢀ3, F(000) = 1000,
m(Mo-Ka) = 0.079 mmꢀ1, 3.5 r y r 25.61, 18 615 reflections
measured, 5409 unique (Rint = 0.049) were used in all calculations,
R1 = 0.0460 [I 4 2s(I), 4369 reflections] and wR2 = 0.1298 (all data);
max/min. residual electron density: 0.46/ꢀ0.20.
Fig. 2 The molecular structure of [(DIPP-nacnac)MgBH4]2 (the iPr
substituents and most hydrogen atoms have been omitted for clarity).
Selected bond distances (A): Mg–N1 2.035(1), Mg–N2 2.041(1),
Mg–H10 1.95(2), Mg–H20 2.20(2), Mg–H2 2.34(2), Mg–H4 1.96(2),
Mgꢂ ꢂ ꢂB1 2.541(2), Mgꢂ ꢂ ꢂB10 2.535(2).
Crystallographic data for (DIPP-nacnac)MgNH(DIPP)BH3:
C41H62BMgN3, M = 632.06, monoclinic, space group P21/c, a =
18.295(4), b = 11.8119(14), c = 18.846(3) A, b = 103.004(15)1, U =
3968.2(12) A3, Z = 4, Dc = 1.058 g cmꢀ3, F(000) = 1384,
m(Mo-Ka) = 0.075 mmꢀ1, 3.5 r y r 25.01, 17 455 reflections
measured, 6903 unique (Rint = 0.109) were used in all calculations,
R1 = 0.0924 [I 4 2s(I), 2340 reflections] and wR2 = 0.2375 (all data);
max/min. residual electron density: 0.34/ꢀ0.30.
1 H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger,
B. L. Scott, M. E. Bowden, B. L. Davis and A. K. Burrell, Angew.
Chem., Int. Ed., 2007, 46, 8995.
2 Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar,
T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F.
David, Nat. Mater., 2008, 7(2), 138.
3 J. Spielmann, G. Jansen, H. Bandmann and S. Harder, Angew.
Chem., Int. Ed., 2008, 47, 6290.
4 J. Spielmann and S. Harder, J. Am. Chem. Soc., 2009, 131, 5064.
5 J. Spielmann, D. Piesik, B. Wittkamp, G. Jansen and S. Harder,
Chem. Commun., 2009, 3455.
6 Review: C. Fedorchuk, M. Copsey and T. Chivers, Coord. Chem.
Rev., 2007, 251, 897.
7 D. R. Armstrong, W. Clegg, H. M. Colquhoun, J. A. Daniels,
R. E. Mulvey, I. R. Stephenson and K. Wade, J. Chem. Soc.,
Chem. Commun., 1987, 630.
8 R. Cern, Y. Filinchuk, H. Hagemann and K. Yvon, Angew. Chem.,
Int. Ed., 2007, 46, 5765.
Fig. 3 The molecular structure of (DIPP-nacnac)MgNH(DIPP)BH3
(the iPr substituents on the DIPP-nacnac ligand and most hydrogen
atoms have been omitted for clarity). Selected bond distances (A):
Mg–N1 2.004(5), Mg–N2 2.024(5), Mg–N3 2.083(4), MgꢂꢂꢂB1 2.291(7).
9 E. Hanecker, H. Noth and J. Moll, Z. Naturforsch. B, 1983, 38,
¨
424.
10 M. Bremer, H. Noth, M. Thomann and M. Schmidt, Chem. Ber.,
resulted in a catalytic decomposition to the bis(amino)borane
HB[NH(DIPP)]2. As this compound can be doubly deprotonated
to a potentially useful bam ligand, a convenient atom-efficient
route was developed. Magnesium amidoborane complexes are
accessible by use of a much more reactive magnesium hydride
reagent.
¨
1995, 128, 455.
11 J. Prust, K. Most, I. Muller, E. Alexopoulos, A. Stasch, I. Uso
´
n
¨
and H. W. Roesky, Z. Anorg. Allg. Chem., 2001, 627, 2032.
12 S. P. Green, C. Jones and A. Stasch, Angew. Chem., Int. Ed., 2008,
47, 9079.
13 J. Spielmann and S. Harder, in preparation.
ꢁc
This journal is The Royal Society of Chemistry 2009
6936 | Chem. Commun., 2009, 6934–6936