Zhang et al.
JOCArticle
construction of the chiral 3-substituted phthalide architec-
tures can lead to convenient approaches to these biologically
intriguing natural products. Consequently their ready avail-
ability enables them to serve as effective chemical tools for
the elucidation of the functions of proteins/receptors. More-
over, these asymmetric strategies will afford useful methods
for establishing absolute configurations of these natural
products including 1b, 1g, 1h, 1i, 1j, 1k, and 1n.
conditions. We have successfully applied the powerful meth-
od for efficient synthesis of natural product (S) 3-butyl-
phthalide in three steps with high yields and high enantio-
selectivity.
Results and Discussion
Design Plan. Aldol reactions are a cornerstone of synthetic
organic chemistry.24 A wealth of imaginative reagents, cata-
lysts, and protocols have been devised for the synthesis of
structurally diversified building blocks and targets. In recent
years, considerable attention has been directed toward de-
veloping organocatalytic asymmetric aldol reactions.25,26
Given the biological importance of the chiral 3-substituted
phthalides, the molecular architectures have become a plat-
form for new synthetic methodology development.1 In spite
of significant progress being made, asymmetric syntheses of
the scaffolds are very limited.15 Chiral auxiliaries, precur-
sors, and resolutions have been intensively explored for such
purposes.16 Despite the fact that catalytic approaches are
particularly appealing, only a handful of examples relying on
the use of organometallics have been reported to date.
Noyori reported the first catalytic asymmetric method using
an enantioselective transfer hydrogenation reaction for the
generation of the chiral 3-substituted phthalides.17 A chiral
amine alcohol mediated addition of zinc reagent to alde-
hydes was illustrated by Butsugan et al.18 Lin and co-workers
reported a Ni(II)/(S)-BINAP complex catalyzed asymmetric
tandem process.19 Tanaka20 and Yamamoto21 indepen-
dently disclosed highly enantioselective Rh(I)-catalyzed
one-pot transesterification and [2þ2þ2] cycloaddition to
afford the chiral frameworks. Trost and Weiss described
an elegant prophenol-promoted enantioselective alkynyl-
ation as a key step for the formation of enantioenriched
phthalides.22 Recently, Cheng and co-workers reported a
CoI2(S,S)dipamp-catalyzed cyclization approach to the
chiral scaffold.23
In contrast to the use of the chiral organometallics as
promoters, the employment of organocatalysts for the synth-
esis of chiral 3-substituted phthalides has not been dis-
closed.24 Moreover, there is ample room for improvement
and new efficient methods are needed in this area, with
respect to safety of reagents, catalysts, catalyst loadings,
stereoselectivities, overall efficiency, atom economy, and
methods with generation of functional diversity. Toward
this end, we wish to detail a new highly efficient organo-
catalytic enantioselective aldol-lactonization process for
the facile preparation of chiral 3-substituted phthalides
from simple achiral starting materials under mild reaction
(25) For recent reviews of organocatalytic aldol reactions see: (a) Dalko,
P.I.;Moisan, L.Angew.Chem., Int. Ed2004, 43, 5138. (b)Notz,N.;Tanaka, F.;
Barbas, C. F.IIIAcc.Chem. Res. 2004, 37, 580.(c)Allenmann,C.;Grodillo, R.;
Clemente, F. R.; Cheong, P. H.-Y.; Houk, K. N. Acc. Chem. Res. 2004, 37, 558.
(d) Berkessel, A.; Groger, H. Asymmetric Organocatalysis;From Biomimetic
Concepts to Applications in Asymmetric Synthesis; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim, Germany, 2005. (e) Mukherjee, S.; Yang, H. W.;
Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471. (f) Guillena, G.; Nagera,
C.; Ramon, D. J. Tetrahedron: Asymmetry 2007, 18, 2249.
(26) For selected examples, see: (a) List, B.; Lerner, R. A.; Barbas, C. F.
III J. Am. Chem. Soc. 2000, 122, 2395. (b) Saito, S.; Nakadai, M.;
Yamamoto, H. Synlett 2001, 1245. (c) Mase, N.; Tanaka, F.; Barbas, C. F.
III Angew. Chem., Int. Ed. 2004, 43, 2420. (d) Cobb, A. J. A.; Shaw, D. M.;
Ley, S. V. Synlett 2004, 558. (e) Torii, H.; Nakadai, M.; Ishihara, K.; Saito,
S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983. (f) Lacoste, E.;
Landasi, Y.; Schenk, K.; Verlhac, J. B.; Vincent, J.-M. Tetrahedron Lett.
2004, 45, 8035. (g) Tang, Z.; Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi,
A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc. 2005, 127, 9285. (h)
Samanta, S.; Liu, J.; Dodda, R.; Zhao, C.-G. Org. Lett. 2005, 7, 5321. (i)
Chen, J.-R.; Lu, H.-H.; Li, X.-Y.; Cheng, L.; Wan, J.; Xiao, W.-J. Org. Lett.
2005, 7, 4543. (j) Enders, D.; Voith, M.; Lenzen, A. Angew. Chem., Int. Ed.
2005, 44, 1304. (k) Wang, W.; Li, H.; Wang, J. Tetrahedron Lett. 2005, 46,
5077. (l) Raj, M.; Vishnumaya; Ginotra, S. K.; Singh, V. K. Org. Lett. 2006,
8, 4097. (m) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka,
F.; Barbas, C. F. III J. Am. Chem. Soc. 2006, 128, 734. (n) Jiang, M.; Zhu,
S.-F.; Yang, Y.; Gong, L. Z.; Zhou, X.-G.; Zhou, Q.-L. Tetrahedron:
Asymmetry 2006, 17, 384. (o) Kano, T.; Tokuda, O.; Maruoka, K. Tetra-
hedron Lett. 2006, 47, 7423.
(27) For recent reviews of organocatalytic cascade reactions, see: (a)
Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem., Int. Ed. 2007, 46,
1570. (b) Yu, X.-H.; Wang, W. Org. Biomol. Chem. 2008, 6, 2036. For recent
selected examples, see: (c) Rueping, M.; Ieawsuwan, W. Adv. Synth. Catal.
2009, 351, 78. (d) Rueping, M.; Antonchick, A. P. Angew. Chem., Int. Ed. 2008,
47, 10090. (e) Enders, D.; Wang, C.; Bats, J. W. Angew. Chem., Int. Ed. 2008, 47,
7539. (f) Zhu, D.; Lu, M.; Chua, P. J.; Tan, B.; Wang, F.; Yang, Y.; Zhong, G. Org.
Lett. 2008, 10, 4585. (g) Dodda, R.; Goldman, J. J.; Mandal, T.; Zhao, C.-G.;
Broker, G. A.; Tiekink, E. R. T. Adv. Synth. Catal. 2008, 350, 537. (h) Hayashi,
Y.; Gotoh, H.; Masui, R.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 4012. (i)
de Figueiredo, R. M.; Froelich, R.; Christmann, M. Angew. Chem., Int. Ed. 2008,
47, 1450. (j) Vo, N. T.; Pace, R. D.; O'Hara, M. F.; Gaunt, M. J. J. Am. Chem. Soc.
2008, 130, 404. (k) Hayashi, Y.; Okano, T.; Aratake, S.; Hazelard, D. Angew.
Chem., Int. Ed. 2007, 46, 4922. (l) Zhou, J.; List, B. J. Am. Chem. Soc. 2007,
129, 7498. (m) Vicario, J. L.; Reboredo, S.; Badía, D.; Carrillo, L. Angew. Chem.,
Int. Ed. 2007, 46, 5168. (n) Carlone, A.; Cabrera, S.; Marigo, M.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2007, 47, 1101. (o) Biddle, M. M.; Lin, M.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 3830. (p) Rios, R.; Vesely, J.; Sundn, H.; Zhao, G.;
Dziedzic, P.; Cordova, A. Adv. Synth. Catal. 2007, 349, 1028. (q) Enders, D.;
H€uttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861. (r) Rueping, M.;
Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. (s)
Huang, Y.; Walji, M. C.; Larsen, H.; MacMillan, D. W. C. J. Am. Chem. Soc.
2005, 127, 15051. (t) Yang, J. W.; Fonseca, M. T. H.; List, B. J. Am. Chem. Soc.
2005, 127, 15036. (u) Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am.
Chem. Soc. 2004, 126, 5962. (v) Ramachary, B.; Chowdari, N. S.; Barbas, C. F. III
Angew. Chem., Int. Ed. 2003, 42, 4233.
(17) (a) Ohkuma, T.; Kitamura, M.; Noyori, R. Tetrahedron Lett. 1990,
31, 5509. (b) Everaere, K.; Scheffler, J.-L.; Mortreux, A.; Carpentier, J.-F.
Tetrahedron Lett. 2001, 42, 1899. (c) Everaere, K.; Mortreux, A.; Carpentier,
J.-F. Adv. Synth. Catal. 2003, 345, 67.
(18) Watanabe, M.; Hashimoto, N.; Araki, S.; Butsugan, Y. J. Org.
Chem. 1992, 57, 742.
(19) Lei, J.-G.; Hong, R.; Yuan, S.-G.; Lin, G.-Q. Synlett 2002, 927.
(20) (a) Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem.,
Int. Ed. 2004, 43, 6510. (b) Tanaka, K.; Osaka, T.; Noguchi, K.; Hirano, M.
Org. Lett. 2007, 9, 1307.
(21) Yamamoto, Y.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005,
127, 9625.
(22) Trost, B. M.; Weiss, A. H. Angew. Chem., Int. Ed. 2007, 46, 7664.
(23) Chang, H.-T.; Jeganmohan, M.; Cheng, C.-H. Chem.;Eur. J. 2007,
13, 4356.
(24) For recent general reviews of aldol reactions, see: (a) Sawamura, M.;
Ito, Y. In Catalyitc Asymmetric Synthesis, 2nd ed.; Ojima, I, Ed.; Wiley-VCH:
New York, 2000. (b) Carreira, E. M. In Catalyitc Asymmetric Synthesis, 2nd ed.;
Ojima, I., Ed.; Wiely-VCH: New York, 2000. (c) Palomo, C.; Oiarbide, M.;
Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65. (d) Mlynarski, J.; Paradowska, J.
Chem. Soc. Rev. 2008, 37, 1502. (e) Dean, S. M.; Greenberg, W. A.; Wong, C.-H.
Adv. Synth. Catal. 2007, 349, 1308.
(28) Selected examples from our laboratory: (a) Wang, W.; Li, H.; Wang,
J.; Zu, L.-S. J. Am. Chem. Soc. 2006, 128, 10354. (b) Li, H.; Wang, J.; E-
Nunu, T.; Zu, L.-S.; Jiang, W.; Wei, S.-H.; Wang, W. Chem. Commun. 2007,
507. (c) Li, H.; Wang, J.; Li, H.; Zu, L.-S.; Xie, H.-X.; Wang, J.; Jiang, W.;
Wang, W. Org. Lett. 2007, 9, 1833. (d) Zu, L.-S.; Li, H.; Xie, H.-X.; Wang, J.;
Jiang, W.; Tang, Y.; Wang, W. Angew Chem., Int. Ed. 2007, 46, 3732. (e) Zu,
L.-S.; Wang, J.; Li, H.; Xie, H.-X.; Jiang, W.; Wang, W. J. Am. Chem. Soc.
2007, 129, 1036. (f) Xie, H.-X.; Zu, L.-S.; Li, H.; Wang, J.; Wang, W. J. Am.
Chem. Soc. 2007, 129, 10886. (g) Wang, J.; Li, H.; Xie, H.-X.; Zu, L.-S.; Shen,
X.; Wang, W. Angew. Chem., Int. Ed. 2007, 46, 9050. (h) Wang, J.; Xie, H.-X.;
Li, H.; Zu, L.-S.; Wang, W. Angew. Chem., Int. Ed. 2008, 47, 4177. (i) Zu,
L.-S.; Zhang, S.-L.; Xie, H.-X.; Wang, W. Org. Lett. 2009, 11, 1627.
370 J. Org. Chem. Vol. 75, No. 2, 2010