C O M M U N I C A T I O N S
Table 2. Substrate Scope of the Direct Catalytic Asymmetric Aldol
Reaction of Thioamides 1a
of thioamide regenerates the aldehyde functionality, and a second
direct aldol reaction proceeds stereoselectively in a catalyst-
controlled manner. Future work will be dedicated to applying the
present protocol to the asymmetric synthesis of natural products
bearing a 1,3-polyol motif.
Acknowledgment. Financial support was provided by a Grant-
in-Aid for Scientific Research (S) and the Sumitomo Foundation.
R.Y. thanks JSPS for a predoctoral fellowship.
Supporting Information Available: Experimental details and
characterization of new compounds. This material is available free of
References
(1) (a) Katz, L. Chem. ReV. 1997, 97, 2557. (b) Khosla, C. Chem. ReV. 1997,
97, 2577.
(2) Reviews: (a) Masamune, S.; Choy, W. Aldrichimica Acta 1982, 15, 47.
(b) Oishi, T.; Nakata, T. Synthesis 1990, 635. (c) Poss, C. S.; Schreiber,
S. L. Acc. Chem. Res. 1994, 27, 9. (d) Schneider, C. Angew. Chem., Int.
Ed. 1998, 37, 1375. (e) Bode, S. E.; Wolberg, M.; Mu¨ller, M. Synthesis
2006, 557.
(3) Selected recent examples of the stereoselective synthesis of 1,3-polyols
via catalytic asymmetric C-C bond formation: (a) Chandrasekhar, S.;
Narsihmulu, C.; Sultana, S. S.; Reddy, M. S. Tetrahedron Lett. 2004, 45,
9299. (b) Zhang, Z.; Aubry, S.; Kishi, Y. Org. Lett. 2008, 10, 3077. (c)
Lu, Y.; Kim, I. S.; Hassan, A.; Del Valle, D. J.; Krische, M. J. Angew.
Chem., Int. Ed. 2009, 48, 5018. (d) Hassan, A.; Lu, Y.; Krische, M. J.
Org. Lett. 2009, 11, 3112.
a 1, 0.48 mmol; 2, 0.4 mmol. b Isolated yield based on 2.
system for nucleophilic activation of the thioamide functionality
(eq 1).
(4) Review: Staunton, J.; Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380.
(5) General reviews of asymmetric aldol reactions: (a) Modern Aldol Reactions;
Mahrwald, R., Ed.; Wiley-VCH: Weinheim, Germany, 2004. (b) Geary,
L. M.; Hultin, P. G. Tetrahedron: Asymmetry 2009, 20, 131.
(6) Reviews of direct aldol reactions: (a) Shibasaki, M.; Yoshikawa, N. Chem.
ReV. 2002, 102, 2187. (b) Alcaide, B.; Almendros, P. Eur. J. Org. Chem.
2002, 1595. (c) Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res.
2004, 37, 580. (d) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem.
ReV. 2007, 107, 5471. Also see ref 5a.
Having developed the direct catalytic asymmetric aldol reaction
of thioamides, we applied the protocol to 1,3-diol synthesis (Scheme
2). TBS protection followed by reduction of the thioamide
functionality with the Schwartz reagent converted 3ba to aldehyde
5 in 82% yield (two steps),15 and 5 was then subjected to another
direct aldol reaction with either the R- or S-configured catalyst.
The reaction proceeded stereoselectively to afford diol (3S,5R)-6
or (3R,5R)-6, respectively, indicating that the catalyst largely
controlled the newly formed stereogenic center.16
(7) There are numerous examples of direct aldol reactions using aldol donors
bearing electron-withdrawing R-substituents that are readily enolized under
mild basic conditions.
(8) Direct catalytic asymmetric aldol(-type) reactions using aldol donors in
the carboxylic acid oxidation state without electron-withdrawing R-sub-
stituents: Alkylnitriles: (a) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M.
Org. Lett. 2005, 7, 3757. Activated amides: (b) Saito, S.; Kobayashi, S.
J. Am. Chem. Soc. 2006, 128, 8704. ꢀ,γ-Unsaturated esters: (c) Yamaguchi,
A.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 10842.
(9) Direct catalytic asymmetric aldol reaction of thiazolidinethiones in which
the use of a stoichiometric amount of silylating reagent was essential: Evans,
D. A.; Downey, C. W.; Hubbs, J. L. J. Am. Chem. Soc. 2003, 125, 8706.
(10) The cross-aldol reaction of aldehydes via asymmetric organocatalysis
provides a useful methodology for the synthesis of polyols and sugars.
Selected examples: (a) Northrup, A. B.; MacMillan, D. W. C. Science 2004,
305, 1752. (b) Co´rdova, A.; Ibrahem, I.; Casas, J.; Sunde´n, H.; Engqvist,
M.; Reyes, E. Chem.sEur. J. 2005, 11, 4772. (c) Markert, M.; Scheffler,
U.; Mahrwald, R. J. Am. Chem. Soc. 2009, 131, 16642. Also see ref 6b-
d. For the relevant catalytic asymmetric C2 elongation using acetaldehyde
as the nucleophile, see: (d) Yang, J. W.; Chandler, C.; Stadler, M.; Kampen,
D.; List, B. Nature 2008, 452, 453. (e) Hayashi, Y.; Itoh, T.; Aratake, S.;
Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 2082.
Scheme 2. Catalyst-Controlled Direct Catalytic Asymmetric Aldol
Reaction for the Synthesis of 1,3-Diolsa
(11) Asymmetric aldol reaction of thioamides with a stoichiometric chiral
source: (a) Cinquini, M.; Manfredi, A.; Molinari, H.; Restelli, A. Tetra-
hedron 1985, 41, 4929. (b) Iwasawa, N.; Yura, T.; Mukaiyama, T.
Tetrahedron 1989, 45, 1197.
a Conditions: (a) TBSOTf, 2,6-lutidine, CH2Cl2; (b) Cp2Zr(H)Cl, toluene,
rt; (c) 1b, [Cu(CH3CN)4]PF6/(R,R)-Ph-BPE/4 (10 mol %), DMF, -60 °C,
40 h; (d) 1b, [Cu(CH3CN)4]PF6/(S,S)-Ph-BPE/4 (10 mol %), DMF, -60
°C, 40 h.
(12) Suzuki, Y.; Yazaki, R.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int.
Ed. 2009, 48, 5026.
(13) See the Supporting Information.
(14) Aromatic aldehydes were more reactive in this system, leading to retro-
aldol reaction and dehydration of the aldol product (e.g., benzaldehyde:
66% yield, 72% ee). Further investigations are currently underway.
(15) Spletstoser, J. T.; White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem.
Soc. 2007, 129, 3408.
In summary, we have documented a direct catalytic asymmetric
aldol reaction of thioamides. The soft Lewis acid/hard Brønsted
basecooperativecatalysisexertedby(R,R)-Ph-BPE/[Cu(CH3CN)4]PF6/
4 enables highly chemoselective deprotonative activation of thioa-
mides over aldehyde and ketone functionalities. Facile reduction
(16) Recent selected examples of catalyst-controlled diastereoselectivity: (a)
Balskus, E. P.; Jacobsen, E. N. Science 2007, 317, 1736. (b) Han, S. B.;
Kong, J. R.; Krische, M. J. Org. Lett. 2008, 10, 4133.
JA909758E
9
J. AM. CHEM. SOC. VOL. 131, NO. 51, 2009 18245