514 Inorganic Chemistry, Vol. 49, No. 2, 2010
Burini et al.
Chart 1. Structure of (1-Benzylimidazole-2-yl)phosphine, (Bzim)Ph2P,
and Tris(1-benzylimidazole-2-yl)phosphine, (Bzim)3P
C-H bond activation of one of the phenyl rings of the
(Bzim)Ph2P ligand was observed by adding [{Ir(μ-Cl)(cod)}2]
to [(Bzim)Ph2PIrCl(cod)] to give the hydride complex
[IrCl(cod){μ-PPh(C6H4)-BzIm}IrHCl(cod)].25 Here we report
the X-ray crystal structures of (Bzim)3PAuCl, 2, and [μ-N,
N0-{(Bzim)3PAuCl}2Au2][AuCl2][AuCl4], 3, which show that
(Bzim)3P ligand is unexpectedly capable of giving rise to
secondary interactions involving Au and H.
Experimental Section
Synthesis of [{(Bzim)Ph2PAuCl}2AuCl2]Cl and[{(Bzim)Ph2-
PAuCl}2AuCl2]BF4. To a solution of (Bzim)Ph2PAuCl20 (0.066 g;
0.155 mmol) in 6 mL of degassed CH2Cl2 was added solid
was reported about sixty years9 later than that of the ana-
logous silver complex.10 Several Au(I)-N complexes have
been described with amines,11 ketimines,12 nitriles,13 pyrazo-
lates,14 poly(pyrazolyl)borates,15 amidinates,16 benzylimida-
zolates, and carbeniates.17 A pentacoordinate nitrido Au(I)
cluster[μ5-N(AuPPh3)5]2þ has been structurally characterized.18
In this study we present the coordination chemistry of the
P,N-donor ligand tris(1-benzylimidazole-2-yl)phosphine,
(Bzim)3P, (Chart 1), with Au(I). The new tertiary phosphine
ligand is similar to poly(pyrazol-1-yl)borates.19 Previous
investigations with the (1-benzylimidazole-2-yl)phosphine
analogue, (Bzim)Ph2P, demonstrated that it can react at the
P atom forming complexes such as (Bzim)Ph2PAuCl20 and
[(Bzim)Ph2PMCl(cod)] (M = Rh(I), Ir(I)),21 or at P and N
centers, as a bidentate ligand, forming dinuclear cationic
complexes such as [μ-(Bzim)Ph2PM]2[X]2 (M=Au(I), Ag(I);
X=PFh, BFh, NOh),22 [μ-(Bzim)Ph2PHgClO4]2[ClO4]2,23 and
NaAuCl4 2H2O (0.023 g; 0.0575 mmol), and the reaction mixture
3
was stirred overnight. The colorless solution slowly turns to yellow,
and the formation of a white precipitate of NaCl was observed. The
solution was then filtered and pumped down to dryness. The crude
compound was washed with hexane and crystallized by CH2Cl2
and hexane. Yield 75%. Anal. Calcd for C44H38N4Au3Cl5P2: C,
36.37; H, 2.64; N, 3.86. Found: C, 36.49; H, 2.84; N, 3.64. 1H NMR
(CDCl3, δ, 295 K): 4.83 (s), 5.08 (s), 5.39 (s), 5.59 (s), 5.64, (s),
6.70-6.75 (m), 6.96-7.00 (m), 7.09-7.98 (m). 31P NMR (CDCl3,
δ, 295 K): 12.47 (s), 15.46 (s), 19.13 (s), 23.44 (s). IR (C-H
stretching region, cm-1): 3117.8, 3054.7, 3033.2, 2957.9, 2925.7,
2856.1. After treatment of [{(Bzim)Ph2PAuCl}2AuCl2]Cl with
a stoichiometric amount of AgBF4, the complex [{(Bzim)Ph2-
PAuCl}2AuCl2]BF4 was formed in a quantitative yield. The
elimination of the chloride counterion resulted in a stable complex
in solution as highlighted by its NMR. Anal. Calcd for
C44H38N4Au3Cl4P2BF4: C, 35.13; H, 2.55; N, 3.72. Found: C,
35.41; H, 2.72; N, 3.60. 1H NMR (CDCl3, δ, 295 K): 4.78 (s, 2H),
4.90 (s, 2H), 6.71-6.75 (m, 4H) 7.13-8.02 (m, 26H), 8.42 (s, 4H).
31P NMR (CDCl3, δ, 295 K): 23.38 (s).
6
4
3
[{μ-(Bzim)Ph2PM(cod)}2][BF4]2 (M=Rh(I), Ir(I)),21 or [(μ-
(Bzim)Ph2P)3M2][X]2 (M=Ag(I), Cu(I); X=CF3SOh, BFh).24
3
4
Synthesis of (Bzim)3P, 1. The synthesis can be carried out in
two alternative ways as reported in literature. Both methods are
successful and give similar yields.26 The following is a slightly
modified synthesis of the one reported for (py)3P by Schmid-
baur. To a stirred anhydrous diethyl ether solution (15 mL) of
1-benzylimidazole (0.4514 g, 2.85 ꢀ 10-3 mol) cooled to -70 °C,
under a nitrogen atmosphere, was added a 2.5 M hexane
solution of BuLi (1.14 mL, 2.85 ꢀ 10-3 mol). After 2 h the tem-
perature of the yellow solution was raised to -30 °C for 30 min
then cooled again to - 90 °C. At this point 2 mL of a diethyl
ether solution containing PCl3 (0.083 mL, 0.95 ꢀ 10-3 mol) was
added dropwise over 1 h. After 2 h the mixture was left to reach
room temperature, and stirred overnight. The white suspension
obtained was extracted with 11 mL of 2 M H2SO4, and then the
aqueous phase was neutralized by a saturated solution of
NaHCO3. The white waxy solid which formed was extracted
with dichloromethane. The yellow solution was dried over
anhydrous Na2SO4 and evaporated to dryness. A 0.319 g
portion of an oily yellow solid was obtained (yield ∼66%).
The (BzIm)3P ligand is easily oxidized, so no satisfactory
analysis was obtained. (BzIm)3P must be kept under a nitrogen
atmosphere. 31P {1H}NMR (acetone-d6; δ, 295 K): -61.76 (s).
A signal at 1.75 (s) is also present. This signal is less than 10% of
the ligand signal at -61.76 ppm, and it can be assigned to the
phosphine oxide.1H NMR (acetone-d6; δ, 295 K): 5.25 (s, 6H),
7.03-7.42 (m, 21H). IR (aromatic and aliphatic C-H stretching
region, cm-1): 3103, 3090 (shoulder), 3062.8, 3030, 3005.4, 2929.4.
Synthesis of (BzIm)3PAuCl, 2. (BzIm)3P, 0.159 g (3.15 ꢀ
10-4 mol), under a nitrogen atmosphere, was dissolved in 5.5 mL
(9) Mingos, D. M. P.; Yau, J.; Menzer, S.; Williams, D. J. J. Chem. Soc.,
Dalton Trans. 1995, 319.
(10) Corey, R. B.; Pestrecov, K. Z. Kristallografiya 1934, 89, 528.
(11) (a) Vicente, J.; Chicote, M. T.; Guerrero, R.; Jones, P. G. J. Chem.
Soc., Dalton Trans. 1995, 1251. (b) Grohmann, A.; Schmidbaur, H. Inorg.
Chem. 1992, 31, 3378. (c) You, J.; Mingos, D. M. P.; Powell, H. Polyhedron
1996, 15, 367.
(12) Schneider, W.; Bauer, A.; Schmidbaur, H. J. Chem. Soc., Dalton
Trans. 1997, 415.
(13) You, J.; Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1997, 1103.
(14) Murray, H. H.; Raptis, R. G.; Fackler, J. P., Jr. Inorg. Chem. 1988,
27, 26.
(15) Lobbia, G.; Hanna, J. V.; Pellei, M.; Pettinari, C.; Santini, C.;
Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 2004, 951.
(16) (a) Mohamed, A. A.; Abdou, H. E.; Irwin, M. D.; Lopez-de-
Luzuriaga, J. M.; Fackler, J. P., Jr. J. Cluster Sci. 2003, 14, 253. (b) Abdou,
H. E.; Mohamed, A. A.; Fackler, J. P., Jr. Inorg. Chem. 2005, 44, 166–168.
(17) (a) Burini, A.; Mohamed, A. A.; Fackler, J. P., Jr. Comments Inorg.
Chem. 2003, 24, 253. (b) Mohamed, A. A.; Burini, A.; Fackler, J. P., Jr. J. Am.
Chem. Soc. 2005, 127, 5013. (c) Mohamed, A. A.; Galassi, R.; Papa, F.; Burini,
A.; Fackler, J. P., Jr. Inorg. Chem. 2006, 45, 7770–7776. (d) Omary, M. A.;
Mohamed, A. A.; Rawashdeh-Omary, M. A.; Fackler, J. P., Jr. Coord. Chem.
Rev. 2005, 249, 1372–1381.
(18) (a) Angermaier, K.; Schmidbaur, H. Inorg. Chem. 1995, 34, 3120.
(b) Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140.
(19) (a) Trofimenko, S. Chem. Rev. 1993, 93, 943. (b) Santini, C.; Gioia
Lobbia, G.; Pettinari, C.; Pellei, M.; Valle, G.; Calogero, S. Inorg. Chem. 1998,
37, 890. (c) Vicente, J.; Chicote, M. T.; Guerrero, R.; Herber, U. Inorg. Chem.
2002, 41, 1870.
(20) (a) Burini, A.; Pietroni, B. R.; Galassi, R; Valle, G.; Calogero, S.
Inorg. Chim. Acta 1995, 229, 299.
(21) Tejel, C.; Ciriano, M. A.; Bravi, R.; Oro, L. A.; Graiff, C.; Galassi,
R.; Burini, A. Inorg. Chim. Acta 2003, 347, 129.
(22) Bachechi, F.; Burini, A.; Galassi, R.; Macchioni, A.; Pietroni, B. R.;
Ziarelli, F.; Zuccaccia, C. J. Organomet. Chem. 2000, 593-594, 392.
(23) Galassi, R.; Bachechi, F.; Burini, A. J. Mol. Struct. 2006, 791, 82–88.
(24) (a) Bachechi, F.; Burini, A.; Fontani, M.; Galassi, R.; Macchioni, A.;
Pietroni, B. R.; Zanello, P.; Zuccaccia, C. Inorg. Chim. Acta 2001, 323, 45.
(b) Bachechi, F.; Burini, A.; Glassi, R.; Pietroni, B. R.; Ricciutelli, M. Inorg.
Chim. Acta 2004, 357, 4349.
(25) Tejel, C.; Bravi, R.; Ciriano, M. A.; Oro, L. A.; Bordonaba, M.;
Graiff, C.; Tiripicchio, A; Burini, A. Organometallics 2000, 19, 3115.
(26) (a) Newkome, G. R. Chem. Rev. 1993, 93, 2067. (b) Schmidbaur, H.;
Inoguchi, Y. Z. Naturforsch. 1980, 35b, 1329. (c) Enders, M.; Fritz, O.; Pritzkow,
H. Z. Anorg. Allg. Chem. 2004, 630, 1501.