7238
Q. Huang, R. C. Larock / Tetrahedron Letters 50 (2009) 7235–7238
6. Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004,
126, 7460–7461.
7. Baudoin, O.; Herrbach, A.; Gueritte, F. Angew. Chem., Int. Ed. 2003, 42, 5736–
5740.
R. J.; Norton, C. L.; O’ Sullivan, N.; Stephens, M. A.; Stradiotto, N. R.; Swann, E.;
Stratford, I. J. J. Med. Chem. 1994, 37, 3834–3843; (c) Naylor, M. A.; Jaffar, M.;
Nolan, J.; Stephens, M. A.; Butler, S.; Patel, K. B.; Everett, S. A.; Adams, G. E.;
Stratford, I. J. J. Med. Chem. 1997, 40, 2335–2346.
8. Zhao, J.; Campo, M. A.; Larock, R. C. Angew. Chem., Int. Ed. 2005, 44, 1873–1875.
9. Wang, L.; Pan, Y.; Jiang, X.; Hu, H. Tetrahedron Lett. 2000, 41, 725–727.
10. Kesharwani, T.; Larock, R. C. Tetrahedron 2008, 64, 6090–6102.
11. (a) Zhang, X.; Larock, R. C. In Handbook of CÀH Transformations; Dyker, G., Ed.;
Wiley-VCH: Weinheim, 2005; p 309; (b) Zhao, J.; Yue, D.; Campo, M. A.; Larock,
R. C. J. Am. Chem. Soc. 2007, 129, 5288–5295.
12. Kesharwani, T.; Verma, A. K.; Emrich, D.; Ward, J. A.; Larock, R. C. Org. Lett.
2009, 11, 2591–2593.
13. For recent reviews regarding cyclopropanes, see: (a) Donaldson, W. A.
Tetrahedron 2001, 57, 8589–8627; (b) Kulinkovich, O. G. Chem. Rev. 2003,
103, 2597–2632; (c) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151–
1196.
14. For recent reviews on mitomycin, see: (a) Colucci, M. A.; Couch, G. D.; Moody,
C. J. Org. Biomol. Chem. 2008, 6, 637–656; (b) Abraham, L. M.; Selva, D.; Casson,
R.; Leibovitch, I. Drugs 2006, 66, 321–340.
15. For leading references on cyclopropamitosenes, see: (a) Moody, C. J.; O’
Sullivan, N.; Stratford, I. J.; Stephens, M. A.; Workman, P.; Bailey, S. M.; Lewis, A.
Anti-Cancer Drugs 1994, 5, 367–372; (b) Cotterill, A. S.; Moody, C. J.; Mortimer,
16. Representive Pd-catalyzed cyclopropanation procedure (entry 2, Table 2): To a 6
dram vial were added Pd(OAc)2 (6.0 mg, 0.025 mmol), dppm (9.2 mg,
0.025 mmol), CsPiv (234 mg, 1.0 mmol), compound 4 (0.50 mmol), and dry
DMF (4 mL). The reaction mixture was stirred at 25 °C under an Ar atmosphere
for 5 min, and was then stirred at 110 °C for 6 h to reach completion. The
reaction mixture was allowed to cool to 25 °C, diluted with Et2O (20 mL), and
washed with brine (20 mL). The organic layer was dried over Na2SO4, filtered,
and concentrated under reduced pressure. The residue was subjected to
purification by chromatography to afford 80 mg of the desired cyclopropane 3
in a 62% yield as a white solid; mp 158–160 °C; 1H NMR (CDCl3) d 1.01–1.03
(m, 1H), 1.28 (dd, J = 4.8, 8.0 Hz, 1H), 1.46 (s, 3H), 2.08–2.10 (m, 1H), 4.05 (d,
J = 6.4 Hz, 1H), 4.24 (dd, J = 5.6, 10.4 Hz, 1H), 7.06–7.17 (m, 3H), 7.25–7.29 (m,
1H), 7.42–7.46 (m, 2H), 7.61 (dd, J = 0.8, 8.0 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H); 13C
NMR (CDCl3) d 17.5, 23.6, 24.2, 28.8, 46.5, 108.4, 109.2, 119.3, 119.7, 121.2,
125.6, 128.4, 129.5, 131.3, 132.8, 135.2, 145.7; IR (CHCl3, cmÀ1) 3018, 2930,
1602, 1478, 1460, 1216; HRMS calcd for C19H17N: 259.1361. Found: 259.1365.
17. For compounds 4 (entry 2) and 5 (entry 3), the 3-position of the indole ring is
blocked; therefore, 1,4 alkyl to aryl migration is prohibited.