pubs.acs.org/joc
addition-elimination chemistry,7-9 desilylation methods10,11
Diastereoselective Alkylations of a Protected
Cysteinesulfenate
and selected specialized protocols.12,13
Adrian L. Schwan,* Marcus J. Verdu, Suneel P. Singh,
Jennifer S. O’Donnell, and Amir Nasser Ahmadi
Department of Chemistry, University of Guelph, Guelph,
Ontario, Canada, N1G 2W1
Received May 26, 2009
FIGURE 1. Sulfenates and related structures.
The growth in the number of sulfenate preparations has
been mirrored by an increase in studies pertaining to stereo-
selective sulfur functionalization reactions. Calling on the
prochiral nature of the sulfur’s lone pairs, Madec and Poli14
reported the enantioselective palladium-catalyzed prepara-
tion of aryl sulfoxides in the presence of chiral ligands. With
the assistance of internal chirality, diastereoselective alkyla-
tion reactions have also been achieved.4,13,15,16 On the basis
of these latter results, we investigated diastereoselective
alkylations of protected cysteinesulfenate derivative 3,
wherein the substituents on the amino acid R-carbon may
be positioned to influence the alkylations. Exploration of
this chemistry will enhance our knowledge of factors that
govern sulfenate reactivity and selectivity.
This study may also assist in understanding the role of
reactive cysteinesulfenate residues in proteins, which have
been implicated as catalysts for a number of enzymes17
including nitrile hydratase.18 In addition, cysteinesulfenate
alkylation chemistry is expected to amplify the available
synthetic procedures to analogues of Allium-based naturally
occurring sulfoxides.19,20
To further understand stereoselection in the alkylation of
sulfenate anions, a protected cysteinesulfenate was gen-
erated in THF solution at low temperature. Introduction
of a reactive alkylating agent brings about a cysteinyl
sulfoxide in 51-75% yield, with diastereomeric ratios at
the sulfinyl group ranging from 83:17 to 95:5. An intern-
ally complexed lithium counterion is proposed to account
for the stereoselectivity.
Sulfenate anions (1)1 represent the conjugate base of sulfenic
acids (2) (Figure 1).2 Like sulfenic acids, the anions are inher-
ently unstable and their study is based principally on their
reactivity. In recent years, a variety of routes have been devel-
oped for the generation of sulfenate anions including oxidation
reactions,3 base induced retro-Michael fragmentations,4-6
(11) Keerthi, K.; Gates, K. S. Org. Biomol. Chem. 2007, 5, 1595–1600.
(12) (a) Refvik, M. D.; Froese, R. D. J.; Goddard, J. D.; Pham, H. H.;
Pippert, M. F.; Schwan, A. L. J. Am. Chem. Soc. 1995, 117, 184–192. (b)
Schwan, A. L.; Lear, Y. Sulfur Lett. 2000, 23, 111–119. (c) Schwan, A. L.;
Roche, M. R.; Gallagher, J. F.; Ferguson, G. Can. J. Chem. 1994, 72, 312–
324. (d) Maezaki, N.; Yagi, S.; Yoshigami, R.; Maeda, J.; Suzuki, T.;
Ohsawa, S.; Tsukamoto, K.; Tanaka, T. J. Org. Chem. 2003, 68, 5550–
5558. (e) Maezaki, N.; Yagi, S.; Maeda, J.; Yoshigami, R.; Tanaka, T.
Heterocycles 2004, 62, 263–277. (f ) Maezaki, N.; Yoshigami, R.; Maeda, J.;
Tanaka, T. Org. Lett. 2001, 3, 3627–3629.
(13) Maezaki, N.; Yagi, S.; Ohsawa, S.; Ohishi, H.; Tanaka, T. Tetra-
hedron 2003, 59, 9895–9906.
(14) Maitro, G.; Vogel, S.; Sadaoui, M.; Prestat, G.; Madec, D.; Poli, G.
Org. Lett. 2007, 9, 5493–5496.
(15) Sandrinelli, F.; Perrio, S.; Averbuch-Pouchot, M.-T. Org. Lett. 2002,
4, 3619–3622.
(16) Maezaki, N.; Yagi, S.; Ohsawa, S.; Ohishi, H.; Tanaka, T. Tetra-
hedron: Asymmetry 2002, 13, 1961–1964.
(17) Kovacs, J. A. Chem. Rev. 2004, 104, 825–848.
(1) O’Donnell, J.; Schwan, A. J. Sulfur Chem. 2004, 25, 183–211.
(2) Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P. Curr.
Org. Chem. 2007, 11, 1034–1052.
(3) (a) Sandrinelli, F.; Perrio, S.; Beslin, P. J. Org. Chem. 1997, 62, 8626–
8627. (b) Sandrinelli, F.; Boudou, C.; Caupene, C.; Averbuch-Pouchot,
M.-T.; Perrio, S.; Metzner, P. Synlett 2006, 3289–3293. (c) Sandrinelli, F.;
Fontaine, G.; Perrio, S.; Beslin, P. J. Org. Chem. 2004, 69, 6916–6919. (d)
Boudou, C.; Berges, M.; Sagnes, C.; Sopkova-de Oliveira Santos, J.; Perrio,
S.; Metzner, P. J. Org. Chem. 2007, 72, 5403–5406.
(4) Lohier, J.-F.; Foucoin, F.; Jaffres, P.-A.; Garcia, J. I.; Sopkova-de
Oliveira Santos, J.; Perrio, S.; Metzner, P. Org. Lett. 2008, 10, 1271–1274.
(5) Caupene, C.; Boudou, C.; Perrio, S.; Metzner, P. J. Org. Chem. 2005,
70, 2812–2815.
(6) (a) Maitro, G.; Prestat, G.; Madec, D.; Poli, G. J. Org. Chem. 2006, 71,
7449–7454. (b) Maitro, G.; Vogel, S.; Prestat, G.; Madec, D.; Poli, G. Org.
Lett. 2006, 8, 5951–5954.
(7) O’Donnell, J. S.; Schwan, A. L. Tetrahedron Lett. 2003, 44, 6293–
6296.
(8) Furukawa, N.; Konno, Y.; Tsuruoka, M.; Ogawa, S. Heteroat. Chem.
1992, 3, 495–503.
(9) Furukawa, N.; Konno, Y.; Tsuruoka, M.; Fujihara, H.; Ogawa, S.
Chem. Lett. 1989, 1501–1504.
(18) (a) Hashimoto, K.; Suzuki, H.; Taniguchi, K.; Noguchi, T.; Yohda,
M.; Odaka, M. J. Biol. Chem. 2008, 283, 36617–36623. (b) Heinrich, L.; Li,
Y.; Vaissermann, J.; Chottard, J.-C. Eur. J. Inorg. Chem. 2001, 1407–1409.
(c) Lugo-Mas, P.; Dey, A.; Xu, L.; Davin, S. D.; Benedict, J.; Kaminsky, W.;
Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Kovacs, J. A. J. Am. Chem.
Soc. 2006, 128, 11211–11221.
(19) Block, E. Angew. Chem., Int. Ed. Engl. 1992, 31, 1135–1178.
(20) One unoptimized example of this work has been reported previously,
see ref 7. Herein we significantly expand upon that contribution, with
optimizations, more examples, complete characterizations, and alkylation
models.
(10) Foucoin, F.; Caupene, C.; Lohier, J.-F.; Santos, J. S. d. O.; Perrio, S.;
Metzner, P. Synthesis 2007, 1315–1324.
DOI: 10.1021/jo901021r
r
Published on Web 08/11/2009
J. Org. Chem. 2009, 74, 6851–6854 6851
2009 American Chemical Society