Organic Letters
Letter
mimetic oxidations by superoxometal complexes. Deuterium kinetic
isotope effects. Dalton Trans. 2005, 365. (c) Dey, S. K.; Mukherjee, A.
Catechol oxidase and phenoxazinone synthase: Biomimetic functional
models and mechanistic studies. Coord. Chem. Rev. 2016, 310, 80.
(d) Mitra, M.; Raghavaiah, P.; Ghosh, R. A mononuclear cobalt(III)
complex and its catecholase activity. New J. Chem. 2015, 39, 200.
(9) (a) Poddel’sky, A. I.; Cherkasov, V. K.; Fukin, G. K.; Bubnov, M.
P.; Abakumova, L. G.; Abakumov, G. A. New four- and five-
coordinated complexes of cobalt with sterically hindered o-
iminobenzoquinone ligands: synthesis and structure. Inorg. Chim.
Acta 2004, 357, 3632. (b) Bill, E.; Bothe, E.; Chaudhuri, P.; Chlopek,
(20) (a) Chun, H.; Verani, C. N.; Chaudhuri, P.; Bothe, E.; Bill, E.;
̈
Weyhermuller, T.; Wieghardt, K. Molecular and Electronic Structure
of Octahedral o-Aminophenolato and o-Iminobenzosemiquinonato
Complexes of V(V), Cr(III), Fe(III), and Co(III). Experimental
Determination of Oxidation Levels of Ligands and Metal Ions. Inorg.
Chem. 2001, 40, 4157. (b) Herebian, D.; Ghosh, P.; Chun, H.; Bothe,
E.; Weyhermuller, T.; Wieghardt, K. Cobalt(II)/(III) complexes
̈
containing o-iminothiobenzosemiquinonato(1-) and o-
iminobenzosemiquinonato(1-) π-radical ligands. Eur. J. Inorg. Chem.
2002, 1957. (c) Poddel’sky, A. I.; Cherkasov, V. K.; Fukin, C. F.;
Bubnov, M. P.; Abakumova, L. G.; Abakumov, G. A. New four- and
five-coordinated complexes of cobalt with sterically hindered o-
iminobenzoquinone ligands: synthesis and structure. Inorg. Chim. Acta
2004, 357, 3632. (d) Smith, A. L.; Hardcastle, K. I.; Soper, J. D.
Redox-Active Ligand-Mediated Oxidative Addition and Reductive
Elimination at Square Planar Cobalt(III): Multielectron Reactions for
Cross-Coupling. J. Am. Chem. Soc. 2010, 132, 14358. (e) Maity, S.;
K.; Herebian, D.; Kokatam, S.; Ray, K.; Weyhermuller, T.; Neese, F.;
̈
Wieghardt, K. Molecular and electronic structure of four- and five-
coordinate cobalt complexes containing two o-phenylenediamine- or
two o-aminophenol-type ligands at various oxidation levels: An
experimental, density functional, and correlated ab initio study. Chem.
- Eur. J. 2005, 11, 204. (c) Blackmore, K. J.; Ziller, J. W.; Heyduk, A.
F. “Oxidative Addition” to a Zirconium(IV) Redox-Active Ligand
Complex. Inorg. Chem. 2005, 44, 5559. (d) Smith, A. L.; Clapp, L. A.;
Hardcastle, K. I.; Soper, J. D. Redox-active ligand-mediated Co-Cl
bond-forming reactions at reducing square planar cobalt(III) centers.
Polyhedron 2010, 29, 164.
Kundu, S.; Bera, S.; Weyhermuller, T.; Ghosh, P. Mixed-Valence o-
̈
Iminobenzoquinone and o-Iminobenzosemiquinonate Anion Radical
Complexes of Cobalt: Valence Tautomerism. Eur. J. Inorg. Chem.
2016, 3680.
(21) (a) Adams, D. M.; Noodleman, L.; Hendrickson, D. N. Density
Functional Study of the Valence-Tautomeric Interconversino Low-Sip
[CoIII(SQ)(Cat)(phen)] ⇌High-Spin [CoII(SQ)2(phen)]. Inorg.
Chem. 1997, 36, 3966−3984. (b) Evangelio, E.; Ruiz-Molina, R.
Valence Tautomerism: New Challenges for Electroactive Ligands.
Eur. J. Inorg. Chem. 2005, 2957.
(10) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R.
V. A.; Ruijter, E. Sustainable Synthesis of Diverse Privileged
Heterocycles by Palladium-Catalyzed Aerobic Oxidative Isocyanide
Insertion. Angew. Chem., Int. Ed. 2012, 51, 13058.
(11) Zhu, T.-H.; Xu, X.-P.; Cao, J.-J.; Wei, T.-Q.; Wang, S.-Y.; Ji, S.-
J. Cobalt(II)-Catalyzed Isocyanide Insertion Reaction with Amines
under Ultrasonic Conditions: A Divergent Synthesis of Ureas,
Thioureas and Azaheterocycles. Adv. Synth. Catal. 2014, 356, 509.
(12) (a) Leardini, R.; Nanni, D.; Zanardi, G. Radical Addition to
Isonitriles: A Route to Polyfunctionalized Alkenes through a Novel
Three-Component Radical Cascade Reaction. J. Org. Chem. 2000, 65,
2763. (b) Chakrabarty, S.; Choudhary, S.; Doshi, A.; Liu, F.-Q.;
Mohan, R.; Ravindra, M. P.; Shah, D.; Yang, X.; Fleming, F. F.
Catalytic Isonitrile Insertions and Condensations Initiated by RNC-X
Complexation. Adv. Synth. Catal. 2014, 356, 2135.
(13) This estimate is based on the BDE of the corresponding amine.
Blanksby, S. J.; Ellison, G. B. Bond Dissociation Energies of Organic
Molecules. Acc. Chem. Res. 2003, 36, 255.
(14) Liu, B.-F.; Yin, M.-Z.; Gao, H.-L.; Wu, W.-Q.; Jiang, H.-F.
Synthesis of 2-Aminobenzoxazoles and 3-Aminobenzoxazines via
Palladium-Catalyzed Aerobic Oxidation of o-Aminophenols with
Isocyanides. J. Org. Chem. 2013, 78, 3009.
(15) Nahakpam, L.; Chipem, F. A. S.; Chingakham, B. S.; Laitonjam,
W. S. Diacetoxyiodobenzene assisted C-O bond formation via
sequential acylation and deacylation process: synthesis of benzoxazole
amides and their mechanistic study by DFT. Org. Biomol. Chem. 2016,
14, 7735.
(16) For examples of related reactions in which radical traps inhibit
product formation, see: Yang, W.-C.; Wei, K.; Sun, X.; Zhu, J.; Wu, L.
Cascade C(sp3)−S Bond Cleavage and Imidoyl C−S Formation:
Radical Cyclization of 2-Isocyanoaryl Thioethers toward 2-Sub-
stituted Benzothiazoles. Org. Lett. 2018, 20, 3144.
(17) Bitzer, J.; Grosse, T.; Wang, L.; Lang, S.; Beil, W.; Zeeck, A.
New aminophenoxazinones from a marine Halomonas sp.:
fermentation, structure elucidation, and biological activity. J. Antibiot.
2006, 59, 86.
́
́
(18) (a) Simandi, L. I.; Barna, T.; Nemeth, S. Kinetics and
mechanism of the cobaloxime(II)-catalyzed oxidation of 2-amino-
phenol by dioxygen. A phenoxazinone synthase model involving free-
radical intermediates. J. Chem. Soc., Dalton Trans. 1996, 473. (b) El-
Khalafy, S. H.; Hassanein, M. Oxidation of 2-aminophenol with
molecular oxygen and hydrogen peroxide catalyzed by water soluble
metalloporphyrins. J. Mol. Catal. A: Chem. 2012, 363−364, 148.
(19) Kaizer, J.; Csonka, R.; Speier, G. TEMPO-initiated oxidation of
2-aminophenol to 2-aminophenoxazin-3-one. J. Mol. Catal. A: Chem.
2002, 180, 91.
E
Org. Lett. XXXX, XXX, XXX−XXX