188
C. Spanka et al. / Bioorg. Med. Chem. Lett. 20 (2010) 184–188
2. (a) Knöpfel, T.; Kuhn, R.; Allgeier, H. J. Med. Chem. 1995, 38, 1417; (b) Conn, P. J.;
Compound 16m was further evaluated in the Vogel conflict
Pin, J. P. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 205.
test16 in which drinking is punished in water-deprived rats by a
mild electrical shock. Compound 16m (3, 10, and 30 mg/kg, oral
administration 1 h before test), significantly increased the number
of punished licks at doses of 10 or 30 mg/kg but not at 3 mg/kg,
(Fig. 4), suggesting a strong anxiolytic-like effect at the two doses.
In the fear-potentiated startle test (FPS), the effects of 16m were
evaluated on the expression of FPS in rats.17 Vehicle-treated ani-
mals displayed a potentiated startle magnitude in the presence
of the light stimulus which had previously been paired with an
electric footshock, indicating the presence of conditioned fear un-
der control conditions. Rats, following an oral pre-treatment
(ꢁ1 h) at doses of 3, 10, and 30 mg/kg showed a significant and
dose-dependent decrease of FPS. The baseline startle response
was not modified at any dose tested (Fig. 5).
In conclusion, robust efficacy of 16m in three different animal
models of fear and anxiety was observed. We were further inter-
ested whether brain and plasma levels of compound 16m can be
correlated with its anxiolytic-like activity of compound 16m. This
was investigated in a further experiment using the FPS model
(Fig. 6).
Analysis of plasma and brain concentrations of 16m showed a
good dose-proportionality from 0.4 to 30 mg/kg in plasma and
brain. Furthermore, a clear relationship between plasma and brain
levels and the behavioral effects could be observed. The half-max-
imal behavioral effect for 16m could be observed at a dose of 2 mg/
kg, corresponding to a brain concentration of 127 56 pmol/g.
In conclusion, high-throughput screening led to the identifica-
tion of 2 as a structurally novel mGlu5 receptor antagonist with
modest in vitro potency. Optimization of the modular lead scaffold
led to the discovery of 16m, a compound showing high affinity at
mGluR5 and selectivity over other glutamate receptors. Character-
ization in vivo revealed a good pharmacokinetic profile in rats, ro-
bust anxiolytic-like effects in three different animal models of fear
and anxiety as well as a good PK/PD correlation. In view of the ro-
bust anxiolytic-like properties in different animal models, com-
pound 16m was considered for further development.
3. (a) Shigemoto, R.; Nomura, S.; Ohishi, H.; Sugihara, H.; Nakanishi, S.; Mizuno, N.
Neurosci. Lett. 1993, 163, 53; (b) Romano, C.; Sesma, M. A.; McDonald, C. T.;
O’Malley, K.; Van den Pol, A. N.; Olney, J. W. J. Comp. Neurol. 1995, 355, 455; (c)
Rodrigues, S. M.; Bauer, E. P.; Farb, C. R.; Schafe, G. E.; LeDoux, J. E. J. Neurosci.
2002, 22, 5219.
4. (a) Phan, K. L.; Fitzgerald, D. A.; Cortese, B. M.; Seraji-Bozorgzad, N.; Tancer, M.
E.; Moore, G. J. NeuroReport 2005, 16, 183; (b) Mathew, S. J.; Price, R. B.;
Charney, D. S. Am. J. Med. Genet. C Semin. Med. Genet. 2008, 148, 89.
5. (a) Bradbury, M. J.; Campbell, U.; Giracello, D.; Chapman, D.; King, C.; Tehrani,
L.; Cosford, N. D. P.; Anderson, J.; Varney, M. A.; Strack, A. M. J. Pharmacol. Exp.
Ther. 2005, 313, 395; (b) Breysse, N.; Baunez, C.; Spooren, W.; Gasparini, F.;
Amalric, M. J. Neurosci. 2002, 22, 5669; (c) Zhu, C. Z.; Wilson, S. G.; Mikusa, J.
P.; Wismer, C. T.; Gauvin, D. M.; Lynch, J. L., III; Wade, C. L.; Decker, M. W.;
Honore, P. Eur. J. Pharmacol. 2004, 506, 107; (d) Mutel, V. Expert Opin. Ther.
Pat. 2002, 12, 1845; (e) Chiamulera, C.; Epping-Jordan, M. P.; Zocchi, A.;
Marcon, C.; Cottiny, C.; Tacconi, S.; Corsi, M.; Orzi, F.; Conquet, F. Nat.
Neurosci. 2001, 4, 873.
6. (a) Gasparini, F.; Lingenhöhl, K.; Stoehr, N.; Flor, P. J.; Heinrich, M.; Vranesic, I.;
Biollaz, M.; Allgeier, H.; Heckendorn, R.; Urwyler, S.; Verney, M. A.; Johnson, E.
C.; Hess, S. D.; Rao, S. P.; Sacaan, A. I.; Santori, E. M.; Velicelebi, G.; Kuhn, R.
Neuropharmacology 1999, 38, 1493; (b) Spooren, W. P. J. M.; Vassout, A.; Neijt,
H. C.; Kuhn, R.; Gasparini, F.; Roux, S.; Porsolt, R. D.; Gentsch, C. Pharmacol. Exp.
Ther. 2000, 295, 1267; (c) Schulz, B.; Fendt, M.; Gasparini, F.; Lingenhöhl, K.;
Kuhn, R.; Koch, M. Neuropharmacology 2001, 41, 1.
7. (a) Daggett, L. P.; Sacaan, A. I.; Akong, M.; Rao, S. P.; Hess, S. D.; Liaw, C.; Urrutia,
A.; Jachec, C.; Ellis, S. B. Neuropharmacology 1995, 34, 871; (b) Flor, P. J.;
Gomeza, J.; Tones, M. A.; Kuhn, R.; Pin, J.-P.; Knoepfel, T. J. Neurochem. 1996, 67,
58; (c) Knopfel, T.; Sakaki, J.; Flor, P. J.; Baumann, P.; Sacaan, A. I.; Velicelebi, G.;
Kuhn, R.; Allgeier, H. Eur. J. Pharmacol. 1994, 288, 389.
8. Kamenecka, T. M.; Bonnefous, C.; Govek, S.; Vernier, J.-M.; Hutchinson, J.;
Chung, J.; Reyes-Manalo, G.; Anderson, J. J. Bioorg. Med. Chem. Lett. 2005, 15,
4350.
9. 6-Chloro-5-methoxynicotinic acid required for the preparation of 13c was
prepared in analogy to Stump, C. A.; Williams, T. M. PCT International Patent
Application WO 00/51614, example 4.
10. 5-(4-Chloro-phenylamino)-2H-pyrazole-3-carboxylic acid required for the
synthesis of 13i was prepared in analogy to a procedure published by Radl,
S. Coll. Czech. Chem. Commun. 1992, 57, 656.
11. Hintermann, S.; Vranesic, I.; Allgeier, H.; Bruelisauer, A.; Hoyer, D.; Lemaire, M.;
Moenius, T.; Urwyler, S.; Whitebread, S.; Gasparini, F.; Auberson, Y. P. Bioorg.
Med. Chem. 2007, 15, 903.
12. Pagano, A.; Ruegg, D.; Litschig, S.; Stoehr, N.; Stierlin, C.; Heinrich, M.;
Floersheim, P.; Prezeau, L.; Carroll, F.; Pin, J. P.; Cambria, A.; Vranesic, I.; Flor, P.
J.; Gasparini, F.; Kuhn, R. J. Biol. Chem. 2000, 275, 33750.
13. A similar binding affinity (Ki: 30 nM) was observed in membranes prepared
from cells expressing rat brain tissue (cortex/hippocampus).
14. Selectivity to ionotropic glutamate receptors was assessed with radioligand
displacement assays in rat brain membranes at the AMPA (glutamate binding
site), kainate (glutamate binding site) and NMDA (glutamate and glycine
binding sites) subtypes.
Acknowledgments
15. (a) Spooren, W. P. J. M.; Gasparini, F.; Salt, T. E.; Kuhn, R. Trends Pharmacol. Sci.
2001, 22, 331; (b) Adriaan Bouwknecht, J.; Olivier, B.; Paylor, R. E. Neurosci.
Biobehav. Rev. 2007, 31, 41.
16. (a) Vogel, J. R.; Beer, B.; Clody, D. E. Psychopharmacology 1971, 21, 1; (b) Millan,
M. J.; Brocco, M. Eur. J. Pharm. 2003, 463, 67.
17. (a) Brown, J. S.; Kalish, H. I.; Farber, I. E. J. Exp. Psychol. 1951, 41, 317; (b) Davis,
M. Behav. Neurosci. 1986, 100, 814; (c) Davis, M.; Falls, W. A.; Campeau, S.
Behav. Brain Res. 1993, 58, 175; (d) Fendt, M.; Fanselow, M. S. Neurosci.
Biobehav. Rev. 1999, 23, 743; (e) Koch, M. Prog. Neurobiol. 1999, 59, 107; (f)
Davis, M. Biol. Psychiat. 1998, 44, 1239; (g) Grillon, C.; Davis, M.
Psychophysiology 1997, 34, 451.
The excellent technical assistance of Christian Boesch, Hugo
Bürki, Riccardo Canova, Stefan Imobersteg, David Kolarik, Nicole
Reymann, Patrick Seitzer, Christine Stierlin, Engin Tasdelen, Roland
Wermuth, Peter Wipfli, Francis Risser, Pierrette Guntz, and Valerie
Cordier is gratefully acknowledged.
References and notes
1. (a) Swanson, C. J.; Bures, M.; Johnson, M. P.; Linden, A.-M.; Monn, J. A.; Schoepp,
D. D. Nat. Rev. Drug Disc. 2005, 4, 131; (b) Ritzen, A.; Mathiesen, J. M.; Thomsen,
C. Basic Clin. Pharmacol. Toxicol. 2005, 97, 202.