M. Yoshida et al. / Tetrahedron Letters 50 (2009) 7297–7299
7299
Supplementary data
O
O
O
O
H
H
O
O
Li
Li
Supplementary data associated with this article can be found, in
Si
Si
N
N
References and notes
1. For reviews see: (a) MacMillan, D. W. C. Nature 2009, 455, 304; (b) Pellissier, H.
Tetrahedron 2007, 63, 9267; (c) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed.
2004, 43, 5138; (d) Houk, K. N.; List, B., Ed. A special issue on asymmetric
organocatalysis; Acc. Chem. Res. 2004, 37, 487; (e) Asymmetric Organocatalysis;
Berkessel, A., Gröger, H., Eds.; Wiley-VCH: Weinheim, 2005.
2. For reviews on organocatalysis using a primary amines, see: (a) Xu, L.-W.; Luo,
J.; Lu, Y. Chem. Commun. 2009, 1807; (b) Xu, L.-W.; Lu, Y. Org. Biomol. Chem.
2008, 6, 2047; (c) Chen, Y.-C. Synlett 2008, 1919.
3. (a) Yang, Y.-Q.; Zhao, G. Chem. Eur. J. 2008, 14, 10888; (b) Wascholowski, V.;
Knudsen, K. R.; Mitchell, C. E. T.; Ley, S. V. Chem. Eur. J. 2008, 14, 6155; (c) Wang,
Y.; Li, P.; Liang, X.; Ye, J. Adv. Synth. Catal. 2008, 350, 1383; (d) Ma, A.; Zhu, S.;
Ma, D. Tetrahedron Lett. 2008, 49, 3075; (e) Palomo, C.; Landa, A.; Mielgo, A.;
Oiarbide, M.; Puente, Á.; Vera, S. Angew. Chem., Int. Ed. 2007, 46, 8431; (f)
Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 661;
(g) Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. Chem. 1996, 61, 3520; (h)
Kawara, A.; Taguchi, T. Tetrahedron Lett. 1994, 35, 8805; (i) Yamaguchi, M.;
Shiraishi, T.; Hirama, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 1176; (j)
Yamaguchi, M.; Yokota, N.; Minami, T. J. Chem. Soc., Chem. Commun. 1991, 1088.
4. (a) Ooi, T.; Ohara, D.; Fukumoto, K.; Maruoka, K. Org. Lett. 2005, 7, 3195; (b)
Kim, D. Y.; Huh, S. C.; Kim, S. M. Tetrahedron Lett. 2001, 42, 6299.
Figure 1. Plausible reaction intermediate.
amount of di-iso-propyl malonate to 2 equiv to enone 1a, the yield
of 2d was improved to 83% without a significant loss of selectivity
(Table 4, entry 6). The Michael addition reaction of di-iso-propyl
malonate with 1a was completed within 96 h to give the product
2d in 92% yield with 79% ee (Table 4, entry 8). Cycloheptenone
(1b) also gave the Michael adduct 2e in a good yield with high
enantioselectivity (96%, 87% ee) (Table 4, entry 9). Although the
reaction of cyclopentenone (1c) was not completed within 7 days,
moderate selectivity was observed (Table 4, entry 10).11 Michael
addition reactions of acyclic enones, benzalacetone (1d), and chal-
cone (1e) with di-iso-propyl malonate proceeded slowly to afford
the products 2g (63%, 70% ee) and 2h (47%, 10% ee) with polar
by-products, respectively (Table 4, entries 11 and 12). Probably,
chalcone could not efficiently form an imine with the catalyst.
A plausible reaction intermediate for the Michael addition reac-
tion using 1a is shown in Figure 1. As previously reported for
imine-based primary amine catalysis,2a,c the present Michael addi-
tion of malonates with enones also proceeds via the formation of
imine. Although (E)- and (Z)-stereoisomers of imine can be formed,
a relatively bulky methylene group comes to the less-hindered side
rather than the vinyl group. The Lewis acidic lithium cation coordi-
nates with the nitrogen atom of imine to reduce the electron den-
sity of the b-carbon and to hold the side chain of the amino acid on
the Re-face of the imine. Therefore, a malonate attacks from the Si-
face of the imine to give (S)-Michael adduct selectively. Probably, a
small and Lewis acidic lithium cation can coordinate more strongly
with the nitrogen atom than can other alkali metal cations.
In summary, we found that a primary amino acid lithium salt
worked as a catalyst for the asymmetric Michael addition of
malonates to enones. A lipophilic amino acid lithium salt, Ser(O-
TBDPS)-OLi, was found to be an effective catalyst, and various
1,5-ketoesters were synthesized in good yields with moderate to
high enantioselectivity.
5. (a) Li, P.; Wen, S.; Yu, F.; Liu, Q.; Li, W.; Wang, Y.; Liang, X.; Ye, J. Org. Lett. 2009,
11, 753; (b) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.; Duan, W.; Wang, W. J. Am.
Chem. Soc. 2006, 128, 12652.
6. (a) Chen, D.; Chen, Z.; Xiao, X.; Yang, Z.; Lin, L.; Liu, X.; Feng, X. Chem. Eur. J.
2009, 15, 6807; (b) Kobayashi, S.; Yamaguchi, M.; Agostinho, M.; Schneider, U.
Chem. Lett. 2009, 38, 296; (c) Kantam, M. L.; Ranganath, K. V. S.; Mahendar, K.;
Chakrapani, L.; Choudary, B. M. Tetrahedron Lett. 2007, 48, 7646; (d) Park, S.-Y.;
Morimoto, H.; Matsunaga, S.; Shibasaki, M. Tetrahedron Lett. 2007, 48, 2815; (e)
Mori, K.; Oshiba, M.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. New J. Chem.
2006, 30, 44; (f) Guo, R.; Chen, X.; Elpelt, C.; Song, D.; Morris, R. H. Org. Lett.
2005, 7, 1757; (g) Guo, R.; Morris, R. H.; Song, D. J. Am. Chem. Soc. 2005, 127,
516; (h) Annamalai, V.; DiMauro, E. F.; Carroll, P. J.; Kozlowski, M. C. J. Org.
Chem. 2003, 68, 1973; (i) Velmathi, S.; Swarnalakshmi, S.; Narasimhan, S.
Tetrahedron: Asymmetry 2003, 14, 113; (j) Prabagaran, N.; Sundararajan, G.
Tetrahedron: Asymmetry 2002, 13, 1053; (k) Jha, S. C.; Joshi, N. N. Tetrahedron:
Asymmetry 2001, 12, 2463; (l) Kumaraswamy, G.; Sastry, M. N. V.; Jena, N.
Tetrahedron Lett. 2001, 42, 8515; (m) Minickam, G.; Sundararajan, G.
Tetrahedron: Asymmetry 1997, 8, 2271; (n) Arai, T.; Sasai, H.; Aoe, K.;
Okamura, K.; Date, T.; Shibasaki, M. Angew. Chem., Int. Ed. 1996, 35, 104.
7. Sato, A.; Yoshida, M.; Hara, S. Chem. Commun. 2008, 6242.
8. Li, P.; Yamamoto, H. Chem. Commun. 2009, 5412.
9. (a) Teo, Y.-C.; Lau, J.-J.; Wu, M.-C. Tetrahedron: Asymmetry 2008, 19, 186; (b)
Teo, Y.-C.; Chua, G.-L. Tetrahedron Lett. 2008, 49, 4235; (c) Wu, X.; Jiang, Z.;
Shen, H.-M.; Lu, Y. Adv. Synth. Catal. 2007, 349, 812; (d) Cheng, L.; Wu, X.; Lu, Y.
Org. Biomol. Chem. 2007, 5, 1018; (e) Aratake, S.; Itoh, T.; Okano, T.; Nagae, N.;
Sumiya, T.; Shoji, M.; Hayashi, Y. Chem. Eur. J. 2007, 13, 10246; (f) Itagaki, N.;
Kimura, M.; Sugahara, T.; Iwabuchi, Y. Org. Lett. 2005, 7, 4185.
10. Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH: Weinheim,
2000.
11. The imine-based catalytic asymmetric Michael addition reaction of malonates
to cyclopentenone usually resulted in lower yields and selectivity than
cyclohexenone or cycloheptenone. See Ref. 3b,h.
Acknowledgment
This work was partly supported by the Global COE Program
(Project No. B01: Catalysis as the Basis for Innovation in Materials
Science) from the Ministry of Education, Culture, Sports, Science
and technology, Japan.