Inorganic Chemistry
Article
substituents on macrocycle ring only) and 6 (chiral substituents
on acetate arms only) (Figure 5). The structural features of 2
REFERENCES
■
(1) (a) Carr, R.; Evans, N. H.; Parker, D. Chem. Soc. Rev. 2012, 41,
7673. (b) Shen, Z.; Wang, T.; Shi, L.; Tang, Z.; Liu, M. Chem. Sci.
2015, 6, 4267. (c) Morisaki, Y.; Gon, M.; Sasamori, T.; Tokitoh, N.;
Chujo, Y. J. Am. Chem. Soc. 2014, 136, 3350.
(2) Xu, J.; Corneillie, T. M.; Moore, E. G.; Law, G.-L.; Butlin, N. G.;
Raymond, K. N. J. Am. Chem. Soc. 2011, 133, 19900.
(3) Wakabayashi, M.; Yokojima, S.; Fukaminato, T.; Shiino, K.-i.; Irie,
M.; Nakamura, S. J. Phys. Chem. A 2014, 118, 5046.
(4) Kumar, J.; Nakashima, T.; Kawai, T. J. Phys. Chem. Lett. 2015, 6,
3445.
(5) Bruce, J. I.; Parker, D.; Lopinski, S.; Peacock, R. D. Chirality
2002, 14, 562.
(6) Zinna, F.; Di Bari, L. Chirality 2015, 27, 1.
(7) Mason, S. F. Molecular Optical Activity and the Chiral
Discriminations; Cambridge University Press, 1982.
́
(8) (a) Sanchez-Carnerero, E. M.; Moreno, F.; Maroto, B. L.;
Agarrabeitia, A. R.; Ortiz, M. J.; Vo, B. G.; Muller, G.; Moya, S. d. l. J.
Am. Chem. Soc. 2014, 136, 3346. (b) Nakamura, K.; Furumi, S.;
Takeuchi, M.; Shibuya, T.; Tanaka, K. J. Am. Chem. Soc. 2014, 136,
5555. (c) San Jose, B. A.; Yan, J.; Akagi, K. Angew. Chem., Int. Ed. 2014,
53, 10641. (d) Inouye, M.; Hayashi, K.; Yonenaga, Y.; Itou, T.;
Fujimoto, K.; Uchida, T. a.; Iwamura, M.; Nozaki, K. Angew. Chem.,
Int. Ed. 2014, 53, 14392. (e) Li, H.; Zheng, X.; Su, H.; Lam, J. W.;
Wong, K. S.; Xue, S.; Huang, X.; Huang, X.; Li, B. S.; Tang, B. Z. Sci.
Rep. 2016, 6, 19277. (f) Feuillastre, S.; Pauton, M.; Gao, L.;
Desmarchelier, A.; Riives, A. J.; Prim, D.; Tondelier, D.; Geffroy, B.;
Muller, G.; Clavier, G. J. Am. Chem. Soc. 2016, 138, 3990.
(9) (a) Seitz, M.; Moore, E. G.; Ingram, A. J.; Muller, G.; Raymond,
K. N. J. Am. Chem. Soc. 2007, 129, 15468. (b) Lunkley, J. L.; Shirotani,
D.; Yamanari, K.; Kaizaki, S.; Muller, G. J. Am. Chem. Soc. 2008, 130,
13814.
(10) Muller, G. Dalton Trans. 2009, 44, 9692.
(11) Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem.
Rev. 1999, 99, 2293.
(12) Mewis, R. E.; Archibald, S. J. Coord. Chem. Rev. 2010, 254, 1686.
(13) Montgomery, C. P.; Murray, B. S.; New, E. J.; Pal, R.; Parker, D.
Acc. Chem. Res. 2009, 42, 925.
(14) (a) Aime, S.; Barge, A.; Bruce, J. I.; Botta, M.; Howard, J. A.;
Moloney, J. M.; Parker, D.; De Sousa, A. S.; Woods, M. J. Am. Chem.
Soc. 1999, 121, 5762. (b) Parker, D.; Dickins, R. S.; Pushmann, H.;
Crossland, C.; Howard, J. A. K. Chem. Rev. 2002, 102, 1977.
(15) Ranganathan, R. S.; Raju, N.; Fan, H.; Zhang, X.; Tweedle, M.
F.; Desreux, J. F.; Jacques, V. Inorg. Chem. 2002, 41, 6856.
(16) Woods, M.; Kovacs, Z.; Zhang, S.; Sherry, A. D. Angew. Chem.,
Int. Ed. 2003, 42, 5889.
(17) (a) Dickins, R. S.; Howard, J. A.; Lehmann, C. W.; Moloney, J.;
Parker, D.; Peacock, R. D. Angew. Chem., Int. Ed. Engl. 1997, 36, 521.
(b) Dickins, R. S.; Howard, J. A.; Maupin, C. L.; Moloney, J. M.;
Parker, D.; Riehl, J. P.; Siligardi, G.; Williams, J. Chem. - Eur. J. 1999, 5,
1095.
Figure 5. Comparison of CPL spectra of 2 (black), 6b (red), and 7
(blue).
and 6b were combined to give 7, and the CPL properties
imparted by the substituents were also combinatory. The glum
values of 7 could be seen as a summation of the values of 2, 6a,
and 6b, and the glum of −0.23 (ΔJ = 1, 589 nm) recorded in
H2O is comparable to the highest in aqueous solution.
In summary, we have presented a new class of stable and
highly emissive lanthanide complexes based on chiral cyclen
derivatives that exhibits high luminescence quantum yields and
strong CPL properties. To the best of our knowledge, the glum
5
7
value of 5 at the D0 → F1 transition (+0.3) is the highest
among europium(III) complexes with high luminescence
589 nm
intensity and stability. The absolute glum
= 0.23 of 7 is
also the highest among the macrocyclic europium(III)
complexes in aqueous solution (Table 2). The structural−
CPL−activity relationship was studied, providing a solid
blueprint for developing even better chiral lanthanide
complexes for studying biological chiral environments.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details, photophysical spectra, high-reso-
lution mass spectra, NMR spectra, and HPLC chromato-
(18) Haussinger, D.; Huang, J.-r.; Grzesiek, S. J. Am. Chem. Soc. 2009,
̈
131, 14761.
(19) Moore, E. G.; Samuel, A. P.; Raymond, K. N. Acc. Chem. Res.
2009, 42, 542.
(20) Richardson, F. S. Inorg. Chem. 1980, 19, 2806.
(21) Sanchez-Carnerero, E. M.; Agarrabeitia, A. R.; Moreno, F.;
́
Maroto, B. L.; Muller, G.; Ortiz, M. J.; de la Moya, S. Chem. - Eur. J.
2015, 21, 13488.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
́
(22) Soulie, M.; Latzko, F.; Bourrier, E.; Placide, V.; Butler, S. J.; Pal,
ACKNOWLEDGMENTS
R.; Walton, J. W.; Baldeck, P. L.; Le Guennic, B.; Andraud, C.; Zwier,
J. M.; Lamarque, L.; Parker, D.; Maury, O. Chem. - Eur. J. 2014, 20,
8636.
■
The authors like to thank Prof. David Parker for the use of his
CPL instrument. We gratefully acknowledge the financial
support from The Hong Kong Polytechnic University
(4BCC8), the Hong Kong Polytechnic University Central
Research Grants (PolyU 5096/13P), and the Research Grants
Council, University Grants Committee Hong Kong (PolyU
253002/14P).
(23) Yuasa, J.; Ohno, T.; Miyata, K.; Tsumatori, H.; Hasegawa, Y.;
Kawai, T. J. Am. Chem. Soc. 2011, 133, 9892.
(24) (a) Harada, T.; Nakano, Y.; Fujiki, M.; Naito, M.; Kawai, T.;
Hasegawa, Y. Inorg. Chem. 2009, 48, 11242. (b) Harada, T.;
Tsumatori, H.; Nishiyama, K.; Yuasa, J.; Hasegawa, Y.; Kawai, T.
Inorg. Chem. 2012, 51, 6476.
E
Inorg. Chem. XXXX, XXX, XXX−XXX