10.1002/anie.201810297
Angewandte Chemie International Edition
COMMUNICATION
[4] Y. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634-
6654.
[5] C. B. Minkenberg, L. Florusse, R. Eelkema, G. J. Koper, J. H. van Esch, J.
Am. Chem. Soc. 2009, 131, 11274-11275.
[6] C. B. Minkenberg, F. Li, P. van Rijn, L. Florusse, J. Boekhoven, M. C. A.
Stuart, G. J. M. Koper, R. Eelkema, J. H. van Esch, Angew. Chem. 2011, 123,
3483-3486; Angew. Chem. Int. Ed. 2011, 50, 3421-3424.
[7] K. D. Okochi, G. S. Han, I. M. Aldridge, Y. Liu, W. Zhang, Org. Lett. 2013,
15, 4296-4299.
[8] M. Mondal, N. Radeva, H. Koster, A. Park, C. Potamitis, M. Zervou, G. Klebe,
A. K. H. Hirsch, Angew. Chem. 2014, 126, 3324-3328; Angew. Chem. Int. Ed.
2014, 53, 3259-3263.
[9] B. T. Michal, C. A. Jaye, E. J. Spencer, S. J. Rowan, ACS Macro Lett. 2013,
2, 694-699.
[10] P. Taynton, H. Ni, C. Zhu, K. Yu, S. Loob, Y. Jin, H. Qi, W. Zhang, Adv.
Mater. 2016, 28, 2904-2909.
[11] M. Rottger, T. Domenech, R. van der Weegen, A. Breuillac, R. Nicolay, L.
Leibler, Science 2017, 356, 62-65.
[12] G. D. Bo, Chem 2016, 1, 668-673.
[13] M. Nakahata, S. Mori, T. Takashima, H. Yamaguchi, A. Harada, Chem 2016,
1, 766-775.
Figure 5. a) Exchange reaction between diselenides and disulfides in different
polymer materials. b) Strain-stress curves of samples welded by UV irradiation
and broken by visible light irradiation.
[14] P. Reutenauer, P. J. Boul, J. M. Lehn, Eur. J. Org. Chem. 2009, 2009, 1691-
1697.
[15] R. C. Boutelle, B. H. J. Northrop, Org. Chem. 2011, 76, 7994-8002.
[16] M. Capela, N. J. Mosey, L. Xing, R. Wang, A. Petitjean, Chem.-Eur. J. 2011,
17, 4598-4612.
In summary, metathesis between disulfide bonds and
diselenide bonds was realized under light, and the exchange
reaction could be manipulated by the wavelength of the light.
When irradiated by UV light, all compounds in the mixture were
reactive, and Se-S bonds were produced, while with particular
visible light irradiation, the exchange reaction was reversed. Thus,
the composition of the mixture was controlled. This chemistry was
introduced into polymer materials, and the wavelength-controlled
cleavage of the polymers was realized with irradiation from a
distance. Furthermore, the metathesis reaction could be
catalyzed by reductants such as thiols. By optimizing the reaction
rate of the forward reaction catalyzed by thiols and the backward
reaction triggered by visible light, a dissipative system is expected
to be formed with light as the input energy, instead of the
traditionally used chemicals.
[17] M. E. Belowich, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 2003-2024.
[18] Y. Yi, H. Xu, L. Wang, W. Cao, X. Zhang, Chem.-Eur. J. 2013, 19, 9506-
9510.
[19] J. Li, J. M. Carnall, M. C. Stuart, S. Otto, Angew. Chem. 2011, 123, 8534-
8536; Angew. Chem. Int. Ed. 2011, 50, 8384-8386.
[20] S. Ji, W. Cao, Y. Yu, H. Xu, Angew. Chem. 2014, 126, 6899-6903; Angew.
Chem. Int. Ed. 2014, 53, 6781-6785.
[21] M. J. Hansen, W. A. Velema, M. M. Lerch, W. Szymanski, B. L. Feringa,
Chem. Soc. Rev. 2015, 44, 3358-3377.
[22] M. Kathan, S. Hecht, Chem. Soc. Rev. 2017, 46, 5536-5550.
[23] H. Frisch, D. E. Marschner, A. S. Goldmann, C. Barner-Kowollik, Angew.
Chem. 2018, 130, 2054-2064; Angew. Chem. Int. Ed. 2018, 57, 2036-2045.
[24] M. Herder, J. M. Lehn, J. Am. Chem. Soc. 2018, 24, 7647-7657.
[25] G. S. Hartley, Nature 1937, 140, 281-281.
[26] H. M. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809-1825.
[27] J. W. Fredy, A. Mendez-Ardoy, S. Kwangmettatam, D. Bochicchio, B. Matt,
M. C. A. Stuart, J. Huskens, N. Katsonis, G. M. Pavan, T. Kudernac, Proc. Natl.
Acad. Sci. U. S. A. 2017, 114, 11850-11855.
[28] H. Huang, A. Juan, N. Katsonis, J. Huskens, Tetrahedron 2017, 73, 4913-
4917.
[29] R. Klajn, Chem. Soc. Rev. 2014, 43, 148-184.
Acknowledgements
[30] M. Irie, Chem. Rev. 2000, 100, 1685-1716.
[31] M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114,
12174-12277.
Gratitude is expressed to Prof. Jean-Marie Lehn for his discussion
about wavelength controlled dynamic chemistry and diselenide
dynamic chemistry. This work was financially supported by the
National Natural Science Foundation of China (Grant 21734006,
91427301) and the National Science Foundation for
Distinguished Young Scholars (Grant 21425416).
[32] M. Irie, M. J. Mohri, Org. Chem. 1988, 53, 803-808.
[33] J. J. de Jong, P. R. Hania, A. Pugzlys, L. N. Lucas, M. de Loos, R.M. Kellogg,
B. L. Feringa, K. Duppen, J. H. van Esch, Angew. Chem. 2005, 117, 2425-2328;
Angew. Chem. Int. Ed. 2005, 44, 2373-2376.
[34] A. Fürstner, Angew. Chem. Int. Ed. 2000, 39, 3012-3043.
[35] S.T. Nguyen, L. K. Johnson, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc.
1992, 114, 3974-3975.
[36] A. G. Vandeputte, M. K. Sabbe, M. F. Reyniers, G. B. Marin, Chem. Eur, J.
Keywords: dynamic covalent bond• metathesis• wavelength
controlled reaction • polymeric materials •
2011, 17, 7656-7673.
[37] M. Kathan, F. Eisenreich, C. Jurssek, A. Dallmann, J. Gurke, S. Hecht,
Nature Chemistry 2018, 10, 1031-1036.
[38] S. Ji, J. Xia, H. Xu, ACS Macro Lett. 2015, 5, 78-82.
[39] S. Ji, W. Cao, Y. Yu, H. Xu, Adv. Mater. 2015, 27, 7740-7745.
[40] J. Xia, S. Ji, H. Xu, Polym. Chem. 2016, 7, 6708-6713.
[41] S. Ji, H. El Mard, M. Smet, W. Dehaen, H. Xu, Sci. China-Chem. 2017, 60,
1191-1196.
[1] J. M. Lehn, Chem.-Eur. J. 1999, 5, 2455-2463.
[2] S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart,
Angew. Chem. 2002, 114, 938-993; Angew. Chem. Int. Ed. 2002, 41, 898-952.
[3] P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J. L. Wietor, J. K. M. Sanders,
S. Otto, Chem. Rev. 2006, 106, 3652-3711.
This article is protected by copyright. All rights reserved.