dimensions can accommodate two molecules per unit cell if
they have opposing orientations and if there is some inter-
digitation of the coincident lateral chains (insets in Fig. 3 and
Fig. S13w). This organization makes the proposed oblique cell
compatible with a p2 plane group, although the less symmetric
p1 plane group cannot be totally ruled out.
2 (a) Y. Lim, K.-S. Moon and M. Lee, Chem. Soc. Rev., 2009, 38,
925; (b) R. M. Capito, H. S. Azevedo, Y. S. Velichko, A. Mata and
S. I. Stupp, Science, 2008, 319, 1812.
3 (a) A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc.
Rev., 2008, 37, 109; (b) J.-H. Ryu, D.-J. Hong and M. Lee, Chem.
Commun., 2008, 1043; (c) L. C. Palmer and S. I. Stupp, Acc. Chem.
Res., 2008, 41, 1674; (d) A. Ajayaghosh and v. K. Praveen, Acc.
Chem. Res., 2007, 40, 644.
For the case of amphiphile 1, the comparison between the
values for the diagonal extracted from the lattice parameters
of the p2 oblique unit cells (5.45 nm) and that measured from
CPK modeling (6.0 nm), suggests some interdigitation of the
peripheral chains. Furthermore, the value of 5.45 nm implies a
slight coiling of these chains out of the plane. A similar
situation can be deduced from the smaller compound 2. Some
of these reflections can also be identified in the electron
diffraction pattern extracted from TEM images (Fig. S10w).
Finally, both X-ray diffractograms show a clear reflection at a
2y value of B23.71, which is ascribable to an organized
number of lamellae separated by a uniform distance of B3.7 A
and fits well with the typical distance reported for p–p
stacking aromatic interactions.18 Additionally, comparable
interplanar distances have been reported for compounds
containing the same aromatic backbone.19 The X-ray diffraction
studies reinforce the argument that the self-assembly of
amphiphiles 1 and 2 is firstly directed by the interdigitation
of their peripheral polar and apolar substituents into lamellae
that subsequently grow by means of p–p stacking aromatic
interactions to give rise to nanographite-like sheets.
4 (a) X. Feng, W. Pisula, T. Kudernac, D. Wu, L. Zhi, S. De Feyter
and K. Mullen, J. Am. Chem. Soc., 2009, 131, 4439; (b) E. Lee,
J.-K. Kim and M. Lee, Angew. Chem., Int. Ed., 2008, 47, 6375;
(c) S. R. Bull, L. C. Palmer, N. J. Fry, M. A. Greenfield,
B. W. Messmore, T. J. Meade and S. I. Stupp, J. Am. Chem.
Soc., 2008, 130, 2742.
¨
5 (a) P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning and
E. W. Meijer, Science, 2006, 313, 80; (b) T. E. Kaiser, H. Wang,
V. Stepanenko and F. Wurthner, Angew. Chem., Int. Ed., 2007, 46,
¨
5541; (c) A. Ajayaghosh, P. Chithra and R. Varghese, Angew.
Chem., Int. Ed., 2007, 46, 230.
6 (a) G. Ferna
2008, 6567; (b) F. Garcı
Chem.–Eur. J., 2009, 15, 6740.
7 (a) J.-K. Kim, E. Lee, Y. Lim and M. Lee, Angew. Chem., Int. Ed.,
´
ndez, F. Garcı
´
a and L. Sa
´
nchez, Chem. Commun.,
´
a, G. Ferna
´
ndez and L. Sanchez,
´
2008, 47, 4662; (b) X. Zhang, Z. Chen and F. Wurthner, J. Am.
¨
Chem. Soc., 2007, 129, 4886; (c) A. Ajayaghosh, R. Varghese,
S. Mahesh and V. K. Praveen, Angew. Chem., Int. Ed., 2006, 45,
7729; (d) A. Ajayaghosh, R. Varghese, V. K. Praveen and
S. Mahesh, Angew. Chem., Int. Ed., 2006, 45, 3261.
8 (a) R. A. Wassel and C. B. Gorman, Angew. Chem., Int. Ed., 2004,
43, 5120; (b) R. L. Carroll and C. B. Gorman, Angew. Chem., Int.
Ed., 2002, 41, 4378.
9 (a) K.-S. Moon, E. Lee, Y. Lim and M. Lee, Chem. Commun.,
2008, 4001; (b) T. A. Martinek, A. Hete
I. M. Mandity, G. K. Toth, I. De Kany and F. Fulop, Angew.
Chem., Int. Ed., 2006, 45, 2396.
´
nyi, L. Fulop,
¨
´
´
´
¨
In conclusion, the peripheral decoration of a rigid 1,2,4,5-
tetrakis(2-phenylethynyl)benzene moiety with polar TEG and
apolar decyl chains results in the anisotropic 2D assembly
of these OPE-based amphiphiles to form highly organized
microcrystalline lamellae. Unlike many other examples of
amphiphilic systems, in which the 2D sheets fold into 3D
micelles or vesicles, the tendency of the rod aromatic units and
the alkyl chains to crystallize frustrates this folding process.
Interestingly, the 2D lamellar organization is observed for
both polar and apolar solvents due to the presence of hydro-
philic and aliphatic chains. X-Ray diffraction analyses in the
bulk-state demonstrate that van der Waals interactions
between the peripheral chains give rise to oblique unit cells.
The nanosheets thus formed efficiently interact by p–p stacking
aromatic interactions and form nanographitic structures that
were unambiguously detected by X-ray data and visualized by
HR-TEM. The high crystallinity reached by the nanographitic
aggregates allows the observation of overlapping sheets that
10 (a) E. Lee, J.-K. Kim and M. Lee, Angew. Chem., Int. Ed., 2009, 48,
3657; (b) J.-K. Kim, E. Lee, Y.-H. Jeong, J.-K. Lee, W.-C. Zin and
M. Lee, J. Am. Chem. Soc., 2007, 129, 6082.
´
11 O. S. Miljanic, K. P. Vollhardt and G. D. Whitener, Synlett,
2003, 29.
12 Metal-Catalyzed Cross-Coupling Reactions, ed. F. Diederich and
P. J. Stang, Wiley-VCH, New York, USA, 1998.
13 (a) Z. Chen, A. Lohr, C. R. Saha-Mo
Chem. Soc. Rev., 2009, 38, 564; (b) F. Garcı
G. Fernandez and L. Sanchez, Org. Lett., 2009, 11, 2748.
14 R. van Hameren, P. Schon, A. M. van Buul, J. Hoogboom,
¨
¨
ller and F. Wurthner,
´
a, F. Aparicio,
´
´
¨
S. V. Lazarenko, J. W. Gerritsen, H. Engelkamp, P. C.
M. Christianen, H. A. Heus, J. C. Maan, T. Rasing, S. Speller,
A. E. Rowan, J. A. A. W. Elemans and R. J. M. Nolte, Science,
2006, 314, 1433.
15 (a) H. Zhou, H. Dang, J.-H. Yi, A. Nanci, A. Rochefort and
J. D. Wuest, J. Am. Chem. Soc., 2007, 129, 13774;
(b) V. Luchnikov, A. Kondyurin, P. Formanek, H. Lichte and
M. Stamm, Nano Lett., 2007, 7, 3628; (c) A. Hashimoto,
K. Suenaga, A. Gloter, K. Urita and S. Ijima, Nature, 2004, 430,
870.
16 (a) X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rader and
¨
K. Mullen, J. Am. Chem. Soc., 2008, 130, 4216; (b) L. Zhi,
give rise to domains presenting Moire patterns. The micro-
´
¨
T. Gorelik, J. Wu, U. Kolb and K. Mullen, J. Am. Chem. Soc.,
2005, 127, 12792.
¨
crystalline non-covalent 2D sheets formed from the reported
amphiphiles could be exploited as the active component in
functional supramolecular systems. Work is in progress to
evaluate the self-assembling features of these amphiphiles
under different experimental conditions and also their photo-
physical properties.
17 (a) A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6, 183;
(b) H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M.
K. Vandersypen and A. F. Morpurgo, Nature, 2007, 446, 56;
(c) O. Vostrowsky and A. Hirsch, Chem. Rev., 2006, 106, 5191;
(d) M. D. Watson, A. Fechtenkotter and K. Mullen, Chem. Rev.,
2001, 101, 1267.
¨
¨
18 (a) Structure and Bonding, ed. W. R. Scheidt and Y. J. Lee,
Springer-Verlag, Berlin, 1987; (b) C. A. Hunter, K. R. Lawson,
J. Perkins and C. J. Urch, J. Chem. Soc., Perkin Trans. 2, 2001,
651.
Notes and references
1 (a) L. Zang, Y. Che and J. S. Moore, Acc. Chem. Res., 2008, 41,
1596; (b) Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii,
A. Saeki, S. Seki, S. Tagawa, M. Taniguchi, T. Kawai and
T. Aida, Science, 2006, 314, 1761; (c) F. J. M. Hoeben,
P. Jonkheijm, E. W. Meijer and A. P. H. J. Schenning, Chem.
Rev., 2005, 105, 1491.
19 (a) J. A. Marsden, J. J. Miller, L. D. Shirtcliff and M. M. Haley,
J. Am. Chem. Soc., 2005, 127, 2464; (b) B. Traber, J. J. Wolff,
F. Rominger, T. Oeser, R. Gleiter, M. Goebel and R. Wortmann,
Chem.–Eur. J., 2004, 10, 1227.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 7155–7157 | 7157