FULL PAPERS
Hydrohydrazination of Arylalkynes
with dichloromethane (10 mL) and evaporated under re-
duced pressure. The crude product was purified by column
chromatography (eluent EtOAc/hexane=10:1, Silica gel 43–
60 mm).
[11] a) C. Cao, Y. Shi, A. L. Odom, Org. Lett. 2002, 4, 2853–
2856; b) K. Alex, A. Tillack, N. Schwarz, M. Beller,
Org. Lett. 2008, 10, 2377–2379; c) K. Alex, A. Tillack,
N. Schwarz, M. Beller, Tetrahedron Lett. 2008, 49,
4607–4609; d) S. Banerjee, E. Barnea, A. L. Odom, Or-
ganometallics 2008, 27, 1005–1014; e) S. L. Dabb, B. A.
Messerle, Dalton Trans. 2008, 6368–6371; f) K. Weiter-
shaus, H. Wadepohl, L. H. Gade, Organometallics 2009,
28, 3381–3389; g) N. T. Patil, V. Singh, Chem. Commun.
2011, 47, 11116–11118; h) J. C. H. Yim, J. A. Bexrud,
R. O. Ayinla, D. C. Leitch, L. L. Schafer, J. Org. Chem.
2014, 79, 2015–2028.
General procedure for hydroamination of alkynes
under solvent free condition (Method B)
A 10 mL vial was charged with a magnetic stirring bar,
2 mmol of alkyne, 2 mmol of hydrazine derivative and
3.8 mg (0.25 mol%) of [(THD-Dipp)AuOTf] and put into
pre-heated (1008C) oil bath. Then the vial was sealed and
the mixture was stirred until the reacion was complete (full
solidification or TLC control). The crude product was puri-
fied by column chromatography (eluent EtOAc/hexane=
10:1, Silica gel 43–60 mm).
[12] A. S. K. Hashmi, M. Rudolph, S. Schymura, J. Visus, W.
Frey, Eur. J. Org. Chem. 2006, 4905–4909.
[13] R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem.
2011, 123, 5674–5677; Angew. Chem. Int. Ed. 2011, 50,
5560–5563.
[14] M. Soleilhavoup, G. Bertrand, Acc. Chem. Res. 2015,
48, 256–266.
[15] M. J. Lopez-Gomez, D. Martin, G. Bertrand, Chem.
Commun. 2013, 49, 4483–4485.
Acknowledgements
This work was supported by Russian Science Foundation
(RSF grant 14–50–00126).
[16] R. Manzano, T. Wurm, F. Rominger, A. S. K. Hashmi,
Chem. Eur. J. 2014, 20, 6844–6848.
[17] A. Couce-Rios, G. Kovacs, G. Ujaque, A. Lledos, ACS
Catal. 2015, 5, 815–829.
[18] a) E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett.
2003, 5, 3349–3352; b) S. Kramer, J. L. H. Madsen, M.
Rottländer, T. Skrydstrup, Org. Lett. 2010, 12, 2758–
2761.
References
[1] a) J. R. Fulton, V. K. Aggarwal, J. de Vicente, Eur. J.
Org. Chem. 2005, 2005, 1479–1492; b) P. Majumdar, A.
Pati, M. Patra, R. K. Behera, A. K. Behera, Chem. Rev.
2014, 114, 2942–2977.
[19] D.-M. Cui, J.-Z. Zheng, L.-Y. Yang, C. Zhang, Synlett
2010, 809–811.
[20] a) E. L. Kolychev, I. A. Portnyagin, V. V. Shuntikov,
V. N. Khrustalev, M. S. Nechaev, J. Organomet. Chem.
2009, 694, 2454–2462; b) A. O. Chagarovskiy, O. A. Iva-
nova, E. M. Budynina, E. L. Kolychev, M. S. Nechaev,
I. V. Trushkov, M. Y. Mel’nikov, Russ. Chem. Bull.
2013, 62, 2407–2423; c) E. L. Kolychev, A. F. Asachen-
ko, P. B. Dzhevakov, A. A. Bush, V. V. Shuntikov, V. N.
Khrustalev, M. S. Nechaev, Dalton Trans. 2013, 42,
6859–6866; d) V. P. Ananikov, L. L. Khemchyan, Y. V.
Ivanova, V. I. Bukhtiyarov, A. M. Sorokin, I. P. Prosvir-
in, S. Z. Vatsadze, A. V. Medved’ko, V. N. Nuriev, A. D.
Dilman, V. V. Levin, I. V. Koptyug, K. V. Kovtunov,
V. V. Zhivonitko, V. A. Likholobov, A. V. Romanenko,
P. A. Simonov, V. G. Nenajdenko, I. Shmatova, V. M.
Muzalevskiy, M. S. Nechaev, A. F. Asachenko, S. Moro-
zov, P. B. Dzhevakov, S. N. Osipov, D. V. Vorobyeva,
M. A. Topchiy, M. A. Zotova, S. A. Ponomarenko, V.
Borshchev, Y. N. Luponosov, A. A. Rempel, A. A.
Vaeeva, A. Y. Stakhee, V. Turov, I. S. Mashkovsky, S. V.
Sysolyatin, V. V. Malykhin, G. A. Bukhtiyarova, A. O.
Terent’ev, I. B. Krylov, Russ. Chem. Rev. 2014, 83, 885–
985.
[2] S. Rollas, S. KüÅükgüzel, Molecules 2007, 12, 1910–
1939.
[3] B. Robinson, Chem. Rev. 1969, 69, 227–250.
[4] W. R. Bamford, T. S. Stevens, J. Chem. Soc. 1952, 4735–
4740.
[5] R. H. Shapiro, M. F. Lipton, K. J. Kolonko, R. L. Bus-
well, L. A. Capuano, Tetrahedron Lett. 1975, 16, 1811–
1814.
[6] a) J. Barluenga, P. Moriel, C. ValdØs, F. Aznar, Angew.
Chem. 2007, 119, 5683–5686; Angew. Chem. Int. Ed.
2007, 46, 5587–5590; b) X. Zhao, J. Jing, K. Lu, Y.
Zhang, J. Wang, Chem. Commun. 2010, 46, 1724–1726;
c) J. Barluenga, C. ValdØs, Angew. Chem. 2011, 123,
7626–7640; Angew. Chem. Int. Ed. 2011, 50, 7486–7500;
d) E. Rasolofonjatovo, B. TrØguier, O. Provot, A.
Hamze, E. Morvan, J.-D. Brion, M. Alami, Tetrahedron
Lett. 2011, 52, 1036–1040; e) Z. Shao, H. Zhang, Chem.
Soc. Rev. 2012, 41, 560–572; f) L. Wu, X. Zhang, Q.-Q.
Chen, A.-K. Zhou, Org. Biomol. Chem. 2012, 10, 7859–
7862.
[7] J. Barluenga, M. Tomµs-Gamasa, F. Aznar, C. ValdØs,
Nature Chem. 2009, 1, 494–499.
[21] O. S. Morozov, A. V. Lunchev, A. A. Bush, A. A.
Tukov, A. F. Asachenko, V. N. Khrustalev, S. S. Zales-
skiy, V. P. Ananikov, M. S. Nechaev, Chem. Eur. J. 2014,
20, 6162–6170.
[22] CCDC 1048477 and CCDC 1411047 (1) contain the
supplementary crystallographic data for this paper.
These data can be obtained free of charge from The
[8] a) A. C. Church, M. U. Koller, M. A. Hines, C. F.
Beam, Synth. Commun. 1996, 26, 3659–3669; b) P. Star-
ˇ
kov, I. Zemskov, R. Sillard, O. TSubrik, U. Mäeorg,
Tetrahedron Lett. 2007, 48, 1155–1157.
[9] S. Sharma, A. Kim, J. Park, M. Kim, J. H. Kwak, Y. H.
Jung, J. S. Park, I. S. Kim, Org. Biomol. Chem. 2013, 11,
7869–7876.
[10] J. March, Advanced Organic Chemistry: Reactions,
Mechanisms, and Structure, 3rd ed., Wiley, 1985.
Cambridge
Crystallographic Data
Centre via
Adv. Synth. Catal. 2016, 358, 1463 – 1468
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1467