A R T I C L E S
Cao et al.
very end of the synthesis (Scheme 1). The reaction starts from an
equilibrium involving an inclusion complex formed between a
crown ether host and a reactive dibromide containing either PMI
or NDI unit. After the addition of 4,4′-bipyridine into the reaction
mixture, the bromides will be displaced upon nucleophilic attack
of the pyridine to generate two N+-C bonds, commensurate with
the formation of BPY2+ unit. Only intramolecular N+-C bond
formation is desirable for the formation of [2]catenanes while
intermolecular reactions will lead to polymeric species. Thanks to
the similar length (N-N distance around 7 Å) of BPY2+, NDI,
and PMI units, no significant geometrical restraints will impede
the macrocyclization of [2]catenanes. On the other hand, the
formation of BPY2+ is facilitated by the donor-acceptor interactions
reinforced in a fixed alternating geometry within a [2]catenane.
The synthesis is first carried out by reacting a PMI containing
dibromide 1, 4,4′-bipyridine, and a hydroquinone (HQ) containing
crown ether, bis-p-phenylene[34]crown-10 (BPP34C10, 3) in DMF
(Scheme 1). After counterion exchange using an acetone/NH4PF6
mixture, the [2]catenane 6•2PF6 is isolated as a red solid in 30%
yield.Whenthemoreelectronrichcrownether1,5-dinaphtho[38]crown-
10 (DNP38C10, 4) is used, the [2]catenane 7•2PF6 is isolated as a
purple solid in 52% yield. NDI-containing [2]catenanes 9•2PF6 and
10•2PF6 are obtained in a similar fashion when dibromide 2 is
employed.18 The asymmetrical crown ether 5 containing TTF and
DNP units as two different electron donors is prepared15f and
subjected to clipping reactions to give fully desymmetrized [2]ca-
tenanes 8•2PF6 and 11•2PF6 as green solids.
X-Ray Crystal Structural Analysis. Although the BPY2+ unit
is known as a better electron acceptor than the PMI and NDI units
when interacting with crown ethers, the co-conformation selectivity
is to be tested when both π-acceptors are covalently linked in a
[2]catenane setting. X-ray structural analysis provide clear evidence
about the preference of BPY2+ unit being included in the crown’s
cavity in the solid state in all [2]catenanes.19 The crystal structure
of 6•2PF6 and 7•2PF6 (Figure 1, a and b) indicates that the dicationic
cyclophane is interlocked with the crown ethers such that (1) the
HQ and DNP moieties are sandwiched between the nearly parallel-
aligned BPY2+ unit and PMI unit with (2) the BPY2+ unit
sandwiched between the parallel-aligned HQ and DNP moieties.
The mean interplanar separations are 3.3 Å, in keeping with
(5) (a) Sambrook, M. R.; Beer, P. D.; Wisner, J. A.; Paul, R. L.; Cowley,
A. R. J. Am. Chem. Soc. 2004, 126, 15364–15365. (b) Beer, P. D.;
Sambrook, M. R.; Curiel, D. Chem. Commun. 2006, 2105–2117. (c)
Ng, K.-Y.; Cowley, A. R.; Beer, P. D. Chem. Commun. 2006, 3676–
3678. (d) Lankshear, M. D.; Beer, P. D. Coord. Chem. ReV. 2006,
250, 3142–3160. (e) Vickers, M. S.; Beer, P. D. Chem. Soc. ReV. 2007,
36, 211–225. (f) Ng, K.-Y.; Felix, V.; Santos, S. M.; Rees, N. H.;
Beer, P. D. Chem. Commun. 2008, 1281–1283. (g) Huang, B.; Santo,
S. M.; Felix, V.; Beer, P. D. Chem. Comm. 2008, 38, 4610–4612.
(6) (a) Fujita, M.; Ibukuro, F.; Hagihar, H.; Ogura, K. Nature 1994, 367,
720–723. (b) Fujita, M.; Aoyagi, M.; Ibukuro, F.; Ogura, K.;
Yamaguchi, K. J. Am. Chem. Soc. 1998, 120, 611–612. (c) Leigh,
D. A.; Lusby, P. J.; Teat, S. J.; Wilson, A. J.; Wong, J. K. Y. Angew.
Chem., Int. Ed. 2001, 113, 1586–1591. (d) Dietrich-Buchecker, C. O.;
Colasson, B.; Fujita, M.; Hori, A.; Geum, N.; Sakamoto, S.; Yamagu-
chi, K.; Sauvage, J.-P. J. Am. Chem. Soc. 2003, 125, 5717–5725. (e)
Fuller, A.-M.; Leigh, D. A.; Lusby, P. J.; Oswald, I. D. H.; Parsons,
S.; Walker, D. B. Angew. Chem., Int. Ed. 2004, 116, 4004–4008. (f)
Hogg, L.; Leigh, D. A.; Lusby, P. J.; Morelli, A.; Parsons, S.; Wong,
J. K. Y. Angew. Chem., Int. Ed. 2004, 116, 1238–1241. (g) Hori, A.;
Sawada, T.; Yamashita, K.; Fujita, M. Angew. Chem., Int. Ed. 2005,
117, 4974–4977. (h) Yamashita, K.; Kawano, M.; Fujita, M. J. Am.
Chem. Soc. 2007, 129, 1850–1851. (i) Wu, J.; Fang, F.; Lu, W.-Y.;
Hou, J.-L.; Li, C.; Wu, Z.-Q.; Jiang, X.-K.; Li, Z.-T.; Yu, Y.-H. J.
Org. Chem. 2007, 72, 2897–2905. (j) Blight, B. A.; Wisner, J. A.;
Jennings, M. C. Angew. Chem., Int. Ed. 2007, 119, 2893–2896. (k)
Crowley, J. D.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.; McBurney,
R. T. Chem. Soc. ReV. 2009, 38, 1530–1541.
(12) (a) Cavallini, M.; Biscarini, F.; Leon, S.; Zerbetto, F.; Bottari, G.;
Leigh, D. A. Science 2003, 299, 531–531. (b) Leigh, D. A.; Morales,
M. A. F.; Perez, E. M.; Wong, J. K. Y.; Saiz, C. G.; Slawin, A. M. Z.;
Carmichael, A. J.; Haddleton, D. M.; Brouwer, A. M.; Buma, W. J.;
Wurpel, G. W. H.; Leon, S.; Zerbetto, F. Angew. Chem., Int. Ed. 2005,
44, 3062–3067. (c) Berna, J.; Leigh, D. A.; Lubomska, M.; Mendoza,
S. M.; Perez, E. M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater.
2005, 4, 704–710.
(13) (a) Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A. H.; Liu,
Y.; Zink, J. I.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
10029–10034. (b) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-F.;
Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626–634. (c)
Angelos, S.; Yang, Y.-W.; Khashab, N. M.; Stoddart, J. F.; Zink, J. I.
J. Am. Chem. Soc. 2009, 131, 11344–11345.
(14) (a) Huang, T. J.; Brough, B.; Ho, C.-M.; Liu, Y.; Flood, A. H.;
Bonvallet, P. A.; Vignon, S. A.; Tseng, H.-R.; Stoddart, J. F.; Baller,
M.; Magonov, S. Appl. Phys. Lett. 2004, 85, 5391–5393. (b) Liu, Y.;
Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.; Tseng,
H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.; Magonov,
S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F. J. Am.
Chem. Soc. 2005, 127, 9745–9759. (c) Juluri, B. K.; Kumar, A. S.;
Liu, Y.; Ye, T.; Yang, Y.-W.; Flood, A. H.; Fang, L.; Stoddart, J. F.;
Weiss, P. S.; Huang, T. J. ACS Nano 2009, 3, 291–300.
(15) For examples of desymmetrized [2]catenanes with various degrees of
control on translational selectivity, see: (a) Livoreil, A.; Dietrich-
Buchecker, C. O.; Sauvage, J.-P. J. Am. Chem. Soc. 1994, 116, 9399–
9400. (b) Ashton, P. R.; Perez-Garcia, L.; Stoddart, J. F.; White,
A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 571–
574. (c) Ashton, P. R.; Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi,
M. T.; Menzer, S.; Perez-Garcia, L.; Prodi, L.; Stoddart, J. F.; Venturi,
M.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1995, 117,
11171–11197. (d) Baumann, F.; Livoreil, A.; Kaim, W.; Sauvage, J.-
P. Chem. Commun. 1997, 35–36. (e) Livoreil, A.; Sauvage, J.-P.;
Armaroli, N.; Balzani, V.; Flamigni, L.; Ventura, B. J. Am. Chem.
Soc. 1997, 119, 12114–12124. (f) Asakawa, M.; Ashton, P. R.; Balzani,
V.; Credi, A.; Hamers, C.; Mattersteig, G.; Montalti, M.; Shipway,
A. N.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Venturi, M.; White,
A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1998, 37, 333–337.
(g) Balzani, V.; Credi, A.; Langford, S. J.; Raymo, F. M.; Stoddart,
J. F.; Venturi, M. J. Am. Chem. Soc. 2000, 122, 3542–3543. (h) Ashton,
P. R.; Baldoni, V.; Balzani, V.; Credi, A.; Hoffmann, H. D. A.;
Martinez-Diaz, M. V.; Raymo, F. M.; Stoddart, J. F.; Venturi, M.
Chem.sEur. J. 2001, 7, 3482–3493. (i) Tseng, H.-R.; Vignon, S. A.;
Celestre, P. C.; Stoddart, J. F.; White, A. J. P.; Williams, D. J.
Chem.sEur. J. 2003, 9, 543–556. (j) Leigh, D. A.; Wong, J. K. Y.;
Dehez, F.; Zerbetto, F. Nature 2003, 424, 174–179. (k) Mobian, P.;
Kern, J.-M.; Sauvage, J.-P. Angew. Chem., Int. Ed. 2004, 43, 2392–
2395. (l) Hernandez, J. V.; Kay, E. R.; Leigh, D. A. Science 2004,
306, 1532–1537. (m) Halterman, R. L.; Martyn, D. E. J. Org. Chem.
2007, 72, 7841–7848.
(7) Balzani, V.; Credi, A.; Venturi, M. Molecular DeVices and Machines
- Concepts and PerspectiVes for the Nanoworld; Wiley-VCH: Wein-
heim, 2008.
(8) (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew. Chem.,
Int. Ed. 2000, 112, 3484–3530. (b) Browne, W. R.; Feringa, B. L.
Nat. Nanotechnol. 2006, 1, 25–35. (c) Champin, B.; Mobian, P.;
Sauvage, J.-P. Chem. Soc. ReV. 2007, 36, 358–366. (d) Kay, E. R.;
Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72–191.
(9) (a) Tseng, H.-R.; Vignon, S. A.; Stoddart, J. F. Angew. Chem., Int.
Ed. 2003, 43, 1491–1495. (b) Badjic, J. D.; Balzani, V.; Credi, A.;
Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845–1849. (c) Fletcher,
S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L. Science 2005, 310,
80–82. (d) Qu, D. H.; Wang, Q. C.; Tian, H. Angew. Chem., Int. Ed.
2005, 44, 5296–5299. (e) Balzani, V.; Clemente-Leon, M.; Credi, A.;
Ferrer, B.; Venturi, M.; Flood, A. H.; Stoddart, J. F. Proc. Natl. Acad.
Sci. U.S.A. 2006, 103, 1178–1183. (f) Sindelar, V.; Silvi, S.; Kaifer,
A. E. Chem. Commun. 2006, 2185–2187. (g) Serreli, V.; Lee, C.-F.;
Kay, E. R.; Leigh, D. A. Nature 2007, 445, 523–527. (h) Klok, M.;
Boyle, N.; Pryce, M. T.; Meetsma, A.; Browne, W. R.; Feringa, B. L.
J. Am. Chem. Soc. 2008, 130, 10484–10485. (i) Zhang, H. Y.; Wang,
Q. C.; Liu, M. H.; Ma, X.; Tian, H. Org. Lett. 2009, 11, 3234–3237.
(j) Durola, F.; Lux, J.; Sauvage, J.-P. Chem.sEur. J. 2009, 15, 4124–
4134.
(10) Silvi, S.; Venturi, M.; Credi, A. J. Mater. Chem. 2009, 19, 2279–
2294.
(11) (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly,
K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science
2000, 289, 1172–1175. (b) Luo, Y.; Collier, C. P.; Jeppesen, J. O.;
Nielsen, K. A.; DeIonno, E.; Ho, G.; Perkins, J.; Tseng, H.-R.;
Yamamoto, T.; Stoddart, J. F.; Heath, J. R. ChemPhysChem 2002, 3,
519–525. (c) Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath,
J. F. Science 2004, 306, 2055–2056. (d) Green, J. E.; Choi, J. W.;
Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; DeIonno, E.; Luo,
Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.; Stoddart, J. F.;
Heath, J. R. Nature 2007, 445, 414–417.
9
1112 J. AM. CHEM. SOC. VOL. 132, NO. 3, 2010