12 X. H. Yang, F. Jaiser and D. Neher, in Highly Efficient OLED with
Phosphorescent Materials, ed. H. Yersin, Wiley-VCH, Weinheim,
2008, pp. 221–258.
13 X. F. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest and
M. E. Thompson, Chem. Mater., 2004, 16, 4743–4747.
14 M.-H. Tsai, H.-W. Lin, H.-C. Su, T.-H. Ke, C.-C. Wu, F.-C. Fang,
Y.-L. Liao, K.-T. Wong and C.-I. Wu, Adv. Mater., 2006, 18, 1216–
1220.
15 K. Walzer, B. Maenning, M. Pfeiffer and K. Leo, Chem. Rev., 2007,
107, 1233–1271.
16 C. Adachi, M. Baldo, M. E. Thompson and S. R. Forrest, J. Appl.
Phys., 2001, 90, 5048–5051.
17 S. Reineke, K. Walzer and K. Leo, Phys. Rev. B: Condens. Matter
Mater. Phys., 2007, 75, 125328.
18 M. A. Baldo, C. Adachi and S. R. Forrest, Phys. Rev. B: Condens.
Matter Mater. Phys., 2000, 62, 10967–10977.
19 N. C. Giebink and S. R. Forrest, Phys. Rev. B: Condens. Matter
Mater. Phys., 2008, 77, 235215.
20 S. Reineke, G. Schwartz, K. Walzer and K. Leo, Appl. Phys. Lett.,
2007, 91, 123508.
activated crystallization. Because of the absence of p-conjuga-
tion between the two charge-carrier moieties, the LUMO/
HOMO levels and the triplet energies of the two moieties as
independent entities are retained in the resultant non-conjugated
bipolar compounds. Furthermore, the flexibility in molecular
design is enhanced by the fact that the triplet energy of a non-
conjugated bipolar compound is not constrained by its electro-
chemical energy gap. Exciplex formation is inevitable in neat
films between the hole- and electron-transport moieties, but its
adverse effects on spectral purity and device efficiency can be
prevented by having triplet emitters serve as charge traps. All
these material traits are conducive to the optimization of prop-
erties for intended device applications. The current efficiencies of
PhOLEDs consisting of Ir(mppy)3 doped in Cz(MP)2, TRZ-
3Cz(MP)2, and TRZ-1Cz(MP)2 at an increasing TRZ content
reach the maximum at 32 cd/A with TRZ-3Cz(MP)2, which is
among the best of solution processed devices using bipolar hosts.
The driving voltage, however, decreases monotonically with an
increasing TRZ content, suggesting improved electron injection
from the adjacent TPBI layer into the emitting layer.
21 W. Staroske, M. Pfeiffer, K. Leo and M. Hoffmann, Phys. Rev. Lett.,
2007, 98, 197402.
22 B. D. Chin and C. Lee, Adv. Mater., 2007, 19, 2061–2066.
23 R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke,
K. Walzer and K. Leo, J. Appl. Phys., 2008, 104, 014510.
24 N. C. Giebink, B. W. D’Andrade, M. S. Weaver, P. B. Machenzie,
J. J. Brown, M. E. Thompson and S. R. Forrest, J. Appl. Phys.,
2008, 103, 044509.
25 K. M. Vaeth and C. W. Tang, J. Appl. Phys., 2002, 92, 3447–3453.
26 X. Yang, D. Neher, D. Hertel and T. K. Daubler, Adv. Mater., 2004,
16, 161–166.
27 F. So, B. Krummacher, M. K. Mathai, D. Poplavsky, S. A. Choulis
and V.-E. Choong, J. Appl. Phys., 2007, 102, 091101.
28 S. H. Kim, J. Jang, K. S. Yook and J. Y. Lee, Appl. Phys. Lett., 2008,
92, 023513.
29 M. E. Kondakova, T. D. Pawlik, R. H. Young, D. J. Giesen,
D. Y. Kondakov, C. T. Brown, J. C. Deaton, J. Lenhard and
K. P. Klubek, J. Appl. Phys., 2008, 104, 094501.
30 H. B. Wu, J. H. Zou, F. Liu, L. Wang, A. Mikhailovsky, G. C. Bazan,
W. Yang and Y. Cao, Adv. Mater., 2008, 20, 696–702.
31 Z. Y. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto,
T. Kajita and M. Kakimoto, Org. Lett., 2008, 10, 421–424.
32 Z. Y. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto,
T. Kajita and M.-a. Kakimoto, Adv. Funct. Mater., 2008, 18, 584–590.
33 Z. Y. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto,
T. Kajita and M.-a. Kakimoto, Chem. Mater., 2008, 20, 2532–2537.
34 X. Cai, A. B. Padmaperuma, L. S. Sapochak, P. A. Vecchi and
P. E. Burrows, Appl. Phys. Lett., 2008, 92, 083308.
35 S. J. Su, H. Sasabe, T. Takeda and J. Kido, Chem. Mater., 2008, 20,
1691–1693.
Acknowledgements
The authors thank Kevin Klubek and Andrew J. Hoteling of
Eastman Kodak Company for MALD/I-TOF analysis,
Professor Ching W. Tang of the Chemical Engineering Depart-
ment at the University of Rochester for his suggestion of bilayer
phosphorescent OLED device structures and access to the
PhOLED device fabrication and characterization facilities, and
Professor Hong Yang for access to the TGA analysis. They are
grateful for the financial support provided by the New York
State Energy Research and Development Authority. Additional
funding was provided by the Department of Energy Office of
Inertial Confinement Fusion under Cooperative Agreement No.
DE-FC52-08NA28302 with LLE. The support of DOE does not
constitute an endorsement by DOE of the views expressed in this
article.
36 M.-Y. Lai, C.-H. Chen, W.-S. Huang, J.-T. Lin, T.-H. Ke,
L.-Y. Chen, M.-H. Tsai and C.-c. Wu, Angew. Chem., Int. Ed.,
2008, 47, 581–585.
References
37 Y. Tao, Q. Wang, C. Yang, Q. Wang, Z. Zhang, T. Zou, J. Qin and
D. Ma, Angew. Chem., Int. Ed., 2008, 47, 8104–8107.
38 Y. T. Tao, Q. Wang, C. L. Yang, K. Zhang, Q. Wang, T. T. Zou,
J. G. Qin and D. G. Ma, J. Mater. Chem., 2008, 18, 4091–4096.
39 Z. Q. Gao, M. M. Luo, X. H. Sun, H. L. Tam, M. S. Wong, B. X. Mi,
P. F. Xia, K. W. Cheah and C. H. Chen, Adv. Mater., 2009, 21, 688–
692.
40 Y. T. Tao, Q. Wang, Y. Shang, C. L. Yang, J. Ao, J. G. Qin, D. G. Ma
and Z. G. Shuai, Chem. Commun., 2009, 77–79.
41 F.-M. Hsu, C.-H. Chien, P.-I. Shih and C.-F. Shu, Chem. Mater.,
2009, 21, 1017–1022.
42 F.-M. Hsu, C.-H. Chien, S.-F. Shu, C.-H. Lai, C.-C. Hsien,
K.-W. Wang and P.-T. Chou, Adv. Funct. Mater., 2009, 19, 2834.
43 K. Brunner, A. V. Dijken, H. Brner, J. J. A. M. Bastiaansen,
N. M. M. Kiggen and B. M. W. Langeveld, J. Am. Chem. Soc.,
2004, 126, 6035–6042.
ꢀ
44 I. Avilov, P. Marsal, J.-L. Bredas and D. Beljonne, Adv. Mater., 2004,
16, 1624–1629.
45 S.-O. Jeon, K. S. Yook, C. W. Joo, J. Y. Lee, K.-Y. Ko, J.-Y. Park
and Y. G. Baek, Appl. Phys. Lett., 2008, 93, 063306.
46 T. Ishi-I, K. Yaguma, T. Thiemann, M. Yashima, K. Ueno and
S. Mataka, Chem. Lett., 2004, 33, 1244–1245.
1 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913–915.
2 B. D’Andrade and S. R. Forrest, Adv. Mater., 2004, 16, 1585–1595.
3 A. Misra, P. Kumar and S. Kamalasana, Semicond. Sci. Technol.,
2006, 21, R35–R47.
4 G. Schwartz, S. Reineke, T. C. Rossenow, K. Walzer and K. Leo,
Adv. Funct. Mater., 2009, 19, 1319–1333.
5 M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151–154.
6 S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato, Appl.
Phys. Lett., 2003, 83, 569–571.
7 R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown,
S. Garon and M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422–
2424.
8 Y. R. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and
S. R. Forrest, Nature, 2006, 440, 908–912.
9 P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby,
D. G. Lidzey, A. J. Campbell, W. Blau and D. D. C. Bradley, Phys.
Rev. B: Condens. Matter Mater. Phys., 2001, 63, 235206.
10 R. J. Holmes, B. D’Andrade, S. R. Forrest, X. Ren, F. Li and
M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818–3815.
11 X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan and A. J. Heeger,
Adv. Funct. Mater., 2003, 13, 439–444.
8780 | J. Mater. Chem., 2009, 19, 8772–8781
This journal is ª The Royal Society of Chemistry 2009