A General Asymmetric Aldol Reaction of Silyl Ketene Acetals
ans, C. S. Burgey, M. C. Kozlowski, S. W. Tregay, J. Am. Chem.
Soc. 1999, 121, 686–699.
[2] J. S. Johnson, D. A. Evans, Acc. Chem. Res. 2000, 33, 325–335.
[3] For example, methyl pyruvate gave 99% ee, whereas ethyl pyr-
uvate gave 91% ee.
[4] E. M. Carreira, R. A. Singer, W. Lee, J. Am. Chem. Soc. 1994,
116, 8837–8838.
[5] L. C. Akullian, M. L. Snapper, A. H. Hoveyda, J. Am. Chem.
Soc. 2006, 128, 6532–6533.
[6] M. Langner, C. Bolm, Angew. Chem. Int. Ed. 2004, 43, 5984–
5987.
[7] H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 732–
733.
[8] K. Mikami, Y. Kawakami, K. Akiyama, K. Aikawa, J. Am.
Chem. Soc. 2007, 129, 12950–12951.
Figure 1. X-ray structure of complex L4.
[9] J.-R. Kong, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2006,
128, 718–719.
[10] Y. Sun, X. Wan, J. Wang, Q. Meng, H. Zhang, L. Jiang, Z.
Zhang, Org. Lett. 2005, 7, 5425–5427.
Conclusions
The asymmetric aldol reactions of silyl ketene acetals of
inexpensive esters and aryl glyoxylates has been reported.
This catalyst system is more tolerant to structural variation
of the substrates than the corresponding thioester aldols.
Moreover, this method excels with aryl α-keto esters and is
therefore highly complementary to other synthetic strate-
gies.
[11] L. C. Weiland, H. Deng, M. L. Snapper, A. H. Hoveyda, J. Am.
Chem. Soc. 2005, 127, 15453–15456.
[12] S. Adachi, T. Harada, Eur. J. Org. Chem. 2009, 3661–3671.
[13] J. C.-D. Le, B. L. Pagenkopf, Org. Lett. 2004, 6, 4097–4099.
[14] For a comprehensive review on bis(oxazoline) ligands: G. Desi-
moni, G. Faita, K. A. Jorgensen, Chem. Rev. 2006, 106, 3561–
3651.
[15] For addition of silyl ketene acetals to ketones, see: K. Oisaki,
D. Zhao, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006,
128, 71647165; K. Oisaki, D. Zhao, Y. Suto, M. Kanai, M.
Shibasaki, Tetrahedron Lett. 2005, 46, 4325–4329.
[16] S. Adachi, T. Harada, Eur. J. Org. Chem. 2009, 3661–3671.
[17] a) S. E. Denmark, Y. Fan, J. Am. Chem. Soc. 2002, 124, 4233–
4235; b) S. E. Denmark, Y. Fan, M. D. Eastgate, J. Org. Chem.
2005, 70, 5235–5248.
Supporting Information (see footnote on the first page of this arti-
cle): General experimental procedures and characterization of all
new compounds, an X-ray structure of L4, and copies of NMR
spectra.
[18] S. Adachi, T. Harada, Org. Lett. 2008, 10, 4999–5001.
[19] L. M. Stanley, M. P. Sibi, CuI and CuII Lewis acids, in: Acid
Catalysis in Modern Organic Synthesis (Eds.: H. Yamamoto,
K. Ishihara), Wiley-VCH, Weinheim, 2008, vol. 2, pp. 903–985.
[20] J. S. Johnson, D. A. Nicewicz, Copper Lewis Acids, in: Modern
Aldol Reactions (Ed.: R. Mahrwald), Wiley-VCH, Weinheim,
2004, vol 2, pp. 69–103.
Acknowledgments
We thank The Petroleum Research Fund and the Natural Sciences
and Engineering Research Council of Canada for partial financial
support. We thank Vincent Lynch for determination of the X-ray
structure. J. L. E. is grateful for a Gates Millennium Scholarship.
[21] The role that the aryl substituents play on the selectivity of the
reaction is currently unknown.
[1] a) D. A. Evans, M. C. Kozlowski, C. S. Burgey, D. W. C. Mac-
Received: September 23, 2009
Published Online: October 28, 2009
Millan, J. Am. Chem. Soc. 1997, 119, 7893–7894; b) D. A. Ev-
Eur. J. Org. Chem. 2009, 6109–6111
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6111