10.1002/anie.202107169
Angewandte Chemie International Edition
RESEARCH ARTICLE
Gómez, N. W. Barnett, A. Polyzos, P. S. Francis, J. Am. Chem. Soc.
2019, 13.
J.-H. Shon, D. Kim, M. D. Rathnayake, S. Sittel, J. Weaver, T. S.
Teets, Chem. Sci. 2021, 12, 4069–4078.
C. Kerzig, X. Guo, O. S. Wenger, J. Am. Chem. Soc. 2019, 141,
2122–2127.
I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam,
A. M. Moran, B. D. Dunietz, D. A. Nicewicz, Nature 2020, 580, 76–80.
J. P. Cole, D.-F. Chen, M. Kudisch, R. M. Pearson, C.-H. Lim, G. M.
Miyake, J. Am. Chem. Soc. 2020, 142, 13573–13581.
H. Kim, H. Kim, T. H. Lambert, S. Lin, J. Am. Chem. Soc. 2020, 142,
2087–2092.
N. G. W. Cowper, C. P. Chernowsky, O. P. Williams, Z. K. Wickens, J.
Am. Chem. Soc. 2020, 142, 5, 2093-2099.
S. Caby, L. M. Bouchet, J. E. Argüello, R. A. Rossi, J. I. Bardagi,
ChemCatChem 2021, 13, 3001–3009.
Y.-J. Chen, T. Lei, H.-L. Hu, H.-L. Wu, S. Zhou, X.-B. Li, B. Chen, C.-
H. Tung, L.-Z. Wu, Matter 2021, 4, 1-13.
I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725–
728.
Et3N can promote premature radical quenching through hydrogen
atom transfer and back electron transfer to Et3N•+ For details see ref
[7].
M. Neumeier, D. Sampedro, M. Májek, V. A. de la Peña O’Shea, A.
Jacobi von Wangelin, R. Pérez-Ruiz, Chem. Eur. J. 2018, 24, 105–
108.
D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas, M. R.
Wasielewski, J. Phys. Chem. A 2000, 104, 6545–6551.
M. Fujitsuka, S. S. Kim, C. Lu, S. Tojo, T. Majima, J. Phys. Chem. B
2015, 119, 7275–7282.
H. Nakashima, T. Shida, H. Nakatsuji, J. Chem. Phys. 2012, 136,
214306.
Finally, we illustrated how principles from RPKA could be directly
employed in electrophotocatalysis, using electrochemical current
to monitor reaction rate in situ throughout a reaction. We
anticipate radical anions will serve as a structurally diverse family
of photoredox catalysts for challenging reductive processes and
that these studies will provide a roadmap for the use of
electrochemistry to both drive and interrogate such systems.
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
Acknowledgements
We thank Prof. Alison Wendlandt for helpful suggestions. We
thank the Stahl lab for their assistance in use of
spectroelectrochemical equipment. Additionally, we thank the
Stahl, Weix, Yoon, and Schomaker groups for sharing their
chemical inventory. Tracy Drier is acknowledged for
electrochemical glassware fabrication. This work was financially
supported by the Office of the Vice Chancellor for Research and
Graduate Education at the University of Wisconsin–Madison with
funding from the Wisconsin Alumni Research Foundation. This
material is based upon work supported by the National Science
Foundation under Grant No. (2047108). Acknowledgment is
made to the Donors of the American Chemical Society Petroleum
Research Fund for partial funding of this research (60677-DNI1).
Spectroscopic instrumentation was supported by a generous gift
from Paul. J. and Margaret M. Bender, NSF (CHE-1048642), and
NIH (1S10 OD020022-1).
[31]
[32]
[33]
[34]
[35]
N. T. La Porte, J. F. Martinez, S. Chaudhuri, S. Hedström, V. S.
Batista, M. R. Wasielewski, Coord. Chem. Rev. 2018, 361, 98–119.
M. Anne. Fox, Chem. Rev. 1979, 79, 253–273.
Y. Yu, P. Guo, J.-S. Zhong, Y. Yuan, K.-Y. Ye, Org. Chem. Front.
2019, 7, 131–135.
[36]
[37]
[38]
J. P. Barham, B. König, Angew. Chem., Int. Ed. 2020, 59, 11732–
11747.
[39]
[40]
[41]
J. Liu, L. Lu, D. Wood, S. Lin, ACS Cent. Sci. 2020, 6, 1317–1340.
H. Huang, T. H. Lambert, Angew. Chem. Int. Ed. 2020, 59, 658–662.
H. Huang, Z. M. Strater, M. Rauch, J. Shee, T. J. Sisto, C. Nuckolls, T.
H. Lambert, Angew. Chem. Int. Ed. 2019, 58, 13318–13322.
H. Huang, Z. M. Strater, T. H. Lambert, J. Am. Chem. Soc. 2020, 142,
1698–1703.
H. Huang, T. H. Lambert, Angew. Chem. Int. Ed. 2021, 60, 11163–
11167.
L. Capaldo, L. L. Quadri, D. Ravelli, Angew. Chem., Int. Ed. 2019, 58,
17508–17510.
H. Yan, Z.-W. Hou, H.-C. Xu, Angew. Chem. Int. Ed. 2019, 58, 4592–
Keywords: electron-primed photoredox catalysis •
electrophotocatalysis • reductive cleavage • radical anions •
kinetic analysis
[42]
[43]
[44]
[45]
[46]
[1]
[2]
E. C. Ashby, Acc. Chem. Res. 1988, 21, 414–421.
N. Zhang, S. R. Samanta, B. M. Rosen, V. Percec, Chem. Rev. 2014,
114, 5848–5958.
[3]
[4]
[5]
[6]
J. Broggi, T. Terme, P. Vanelle, Angew. Chem., Int. Ed. 2014, 53,
384–413.
4595.
S. Wu, J. Žurauskas, M. Domański, P. S. Hitzfeld, V. Butera, D. J.
Scott, J. Rehbein, A. Kumar, E. Thyrhaug, J. Hauer, J. P. Barham,
Org. Chem. Front. 2021, 8, 1132–1142.
Barham and coworkers have shown that tuning of catalyst structure
has a significant impact on the reactivity observed in the context of
oxidative electrophotocatalysis. This observation was leveraged to
improve electrophotocatalytic oxidation reactions, see ref [46].
Y. Qiu, A. Scheremetjew, L.H. Finger, L. Ackermann, Chem. Eur. J.,
2020, 26, 3241-3246.
Far fewer examples exist of electrophotochemical reductions
compared to oxidative electrophotochemistry–the existing reports
exclusively activate aryl chloride substrates. For details see refs: [25],
[26], [27], [28].
While this manuscript was under review, an electrophotocatalytic
reductive olefination system was reported. This new system relied on
careful tuning of the N-Aryl substituent of napthlene imide catalysts,
see: Angew. Chem. Int. Ed. Early View DOI: 10.1002/anie.202105895.
Aniline substrates can be converted into diazonium salts, which
readily undergo reductive fragmentation to aryl radical intermediates.
However, these salts are explosive and the conditions to generate
them are highly oxidizing. For more information, see: [52], [53], [54].
N. Oger, E. L. Grognec, F.-X. Felpin, Org. Chem. Front. 2015, 2, 590–
614.
P. Chakma, Z. A. Digby, M. P. Shulman, L. R. Kuhn, C. N. Morley, J.
L. Sparks, D. Konkolewicz, ACS Macro Lett. 2019, 8, 95–100.
J. B. Washington, Chem. Sci. 2021, 12, 6949-6963.
U. Azzena, T. Denurra, G. Melloni, E. Fenude, G. Rassu, J. Org.
Chem. 1992, 57, 1444–1448.
H. Xu, B. Yu, H. Zhang, Y. Zhao, Z. Yang, J. Xu, B. Han, Z. Liu,
Chem. Commun. 2015, 51, 12212–12215.
S. Jin, Hang. T. Dang, G. C. Haug, R. He, V. D. Nguyen, V. T.
Nguyen, H. D. Arman, K. S. Schanze, O. V. Larionov, J. Am. Chem.
Soc. 2020, 142, 1603–1613.
L. Eberson, in Advances in Physical Organic Chemistry (Eds.: V.
Gold, D. Bethell), Academic Press, 1982, pp. 79–185.
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322–5363.
M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81,
6898–6926.
[47]
[48]
[49]
[7]
[8]
N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035–
10074.
[9]
D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M.
Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802–4806.
J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2010, 40,
102–113.
D. M. Arias-Rotondo, J. K. McCusker, Chem. Soc. Rev. 2016, 45,
5803–5820.
[10]
[11]
[12]
[50]
[51]
K. K. Kundu, A. K. Rakshit, M. N. Das, Electrochim. Acta 1972, 17,
1921–1937.
[13]
[14]
[15]
H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723.
K. V. Chuang, C. Xu, S. E. Reisman, Science 2016, 353, 912–915.
C. He, T. P. Stratton, P. S. Baran, J. Am. Chem. Soc. 2019, 141, 29–
32.
[52]
[53]
[16]
[17]
[18]
D. K. Joshi, J. W. Sutton, S. Carver, J. P. Blanchard, Org. Process
Res. Dev. 2005, 9, 997–1002.
E. Speckmeier, T. G. Fischer, K. Zeitler, J. Am. Chem. Soc. 2018,
140, 15353–15365.
B. K. Peters, K. X. Rodriguez, S. H. Reisberg, S. B. Beil, D. P. Hickey,
Y. Kawamata, M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder,
T. J. Gorey, S. L. Anderson, M. Neurock, S. D. Minteer, P. S. Baran,
Science 2019, 363, 838–845.
[54]
[55]
[56]
[57]
[19]
[20]
F. Glaser, C. Kerzig, O. S. Wenger, Angew. Chem., Int. Ed. 2020, 59,
10266–10284.
T. U. Connell, C. L. Fraser, M. L. Czyz, Z. M. Smith, D. J. Hayne, E. H.
Doeven, J. Agugiaro, D. J. D. Wilson, J. L. Adcock, A. D. Scully, D. E.
[58]
S. Wang, H. Wang, B. König, Chem, 2021, 7, 1414-1416.
6
This article is protected by copyright. All rights reserved.