2k also reacted with 1a under the standard conditions to
form dienes 3j and 3k, respectively (entries 9 and 10). A
sterically hindered bromide, 1-bromo-1,2,2-triphenylethene
(2l), was found to be less reactive than ꢀ-bromostyrenes
under similar conditions (entry 11). In this case, the
addition of PPh3 (0.012 mmol) effectively promoted the
reaction. Thus, under the modified conditions, (1E,3E)-
4-(4-hydroxy-3-methoxyphenyl)-1,1,2-triphenyl-1,3-buta-
diene (3l) was obtained almost quantitatively (entry 12).
Table 3 summarizes the results for the couplings of several
substituted cinnamic acids 1b-e with 2a or 2i. Sinapinic
coupling with 2a to produce dienes 3m and 3n (entries 1
and 2). In contrast, treatment of p-(dimethylamino)cinnamic
acid (1d) with 2a under similar conditions gave only a trace
amount of expected product 3o (entry 3). Interestingly, the
yield of 3o was significantly improved by the addition of
AgOAc (0.6 mmol) (entry 4). AgOAc seems to promote the
decarboxylation of less reactive 1d.10 In the presence of the
silver salt, p-methoxycinnamic acid (1e) also reacted with
2a to form diene 3p (entry 5). The reactions of 1c and 1d
with 2i proceeded smoothly to form “donor-acceptor-
substituted diphenylbutadienes”, 3q and 3r (entries 6 and
7), which have attracted much attention for their unique
optical properties.3a,c,g,h,j-m,o
Some of diarylbutadienes obtained above showed solid-
state fluorescence in a range of 400-500 nm (see the
Supporting Information). Notably, 3h exhibited a relatively
strong emission compared to a typical emitter, tris(8-
hydroxyquinolino)aluminum (Alq3), by a factor of 4.5 (λemis
450, 472 nm, A versus B in Figure 1).
Table 3. Reaction of Cinnamic Acids 1 with 2a or 2ia
entry
1
X
Y
2
Z
3; % yieldb
1
2
3
4c
5c
6d
7e
1b
1c
1d
1d
1e
1c
1d
OH
OH
NMe2
NMe2
OMe
OH
OMe
H
H
H
H
2a
2a
2a
2a
2a
2i
H
H
H
H
H
CN
CN
3m; 94 (79)
3n; 63 (63)
3o; tr
3o; 43 (43)
3p; (53)
H
H
3q; 80 (75)
3r; 59 (58)
NMe2
2i
a Reaction conditions: [1]/[2]/[Pd(OAc)2]/[LiOAc]/[LiCl] ) 0.48:
0.4:0.012:0.8:0.6 (in mmol), DMF (2.5 mL) at 120 °C for 6 h under N2.
b GC yield. Value in parentheses indicates yield after purification.
c AgOAc (0.6 mmol) was added. d With 1a (0.4 mmol) and 2 (0.6 mmol).
e [1]/[2]/[Pd(OAc)2]/[LiOAc]/[LiCl]/[AgOAc] ) 0.2:0.3:0.006:0.4:0.3:
0.3 (in mmol), in DMF (1.5 mL).
Figure 1. Fluorescence spectra of 3h (A) and Alq3 (B) in the solid-
state upon excitation at 380 nm.
acid (1b) and coumaric acid (1c), which are also present in
plants as well as ferulic acid, underwent the decarboxylative
(5) Selected reviews: (a) Goossen, L. J.; Rodriguez, N.; Goossen, K.
Angew. Chem., Int. Ed. 2008, 47, 3100. (b) Baudoin, O. Angew. Chem.,
Int. Ed. 2007, 46, 1373. For reviews concerning coupling via C-C bond
cleavage, see: (c) Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2009,
82, 778. (d) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41,
222. (e) Catellani, M.; Motti, E.; Della Ca’, N. Acc. Chem. Res. 2008, 41,
1512. (f) Nakao, Y.; Hiyama, T. Pure Appl. Chem. 2008, 80, 1097. (g)
Tobisu, M.; Chatani, N. Chem. Soc. ReV. 2008, 37, 300. (h) Satoh, T.; Miura,
M. Top Organomet. Chem. 2007, 24, 61. (i) Murakami, M.; Makino, M.;
Ashida, S.; Matsuda, T. Bull. Chem. Soc. Jpn. 2006, 79, 1315. (j) Kondo,
T.; Mitsudo, T. Chem. Lett. 2005, 34, 1462. (k) Jun, C.-H. Chem. Soc.
ReV. 2004, 33, 610. (l) Nishimura, T.; Uemura, S. Synlett 2004, 201. (m)
van der Boom, M. E.; Milstein, D. Chem. ReV. 2003, 103, 1759. (n)
Perthuisot, C.; Edelbach, B. L.; Zubris, D. L.; Simhai, N.; Iverson, C. N.;
Muller, C.; Satoh, T.; Jones, W. D. J. Mol. Catal. A: Chem. 2002, 189,
157.
1,6-Diaryl-1,3,5-hexatriene synthesis could be achieved
by the present decarboxylative coupling. Thus, treatment
of ferulic acid (1a) (0.48 mmol) with 1-bromo-4-phenyl-
1,3-butadiene (2m) (0.4 mmol) under the standard condi-
tions gave 1-(4-hydroxy-3-methoxyphenyl)-6-phenyl-1,3,5-
hexatriene (4a) in 68% yield (entry 1 in Table 4). As in
the case using a less reactive bromide 2l, the reaction with
2m was also promoted by the addition of PPh3 (0.012
mmol) to improve the yield of 4a up to 74% (entry 2).
Under the conditions with PPh3, 1b and 1c also reacted
with 2m to produce trienes 4b and 4c, respectively (entries
3 and 4).
(6) (a) Yamashita, M.; Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M.
J. Org. Chem. 2009, 74, 7481. (b) Shimizu, M.; Hirano, K.; Satoh, T.; Miura,
M. J. Org. Chem. 2009, 74, 3478. (c) Miyasaka, M.; Hirano, K.; Satoh, T.;
Miura, M. AdV. Synth. Catal. 2009, 351, 2683. (d) Yamashita, M.; Hirano,
K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 2337. (e) Miyasaka, M.;
Fukushima, A.; Satoh, T.; Hirano, K.; Miura, M. Chem.sEur. J. 2009, 15,
3674. (f) Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008,
10, 1159. (g) Nakano, M.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett.
2008, 10, 1851. (h) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007,
72, 5362.
(8) (a) Das, J. P.; Roy, S. J. Org. Chem. 2002, 67, 7861. (b) Kuang, C.;
Yang, Q.; Senboku, H.; Tokuda, M. Synlett 2000, 1439. (c) Naskar, D.;
Roy, S. Tetrahedron 2000, 56, 1369. (d) Chowdhury, S.; Roy, S. J. Org.
Chem. 1997, 62, 199.
(9) (a) Amatore, C.; Jutand, A.; Suarez, A. J. Am. Chem. Soc. 1993,
115, 9531. (b) Amatore, C.; Azzabi, M.; Jutand, A. J. Am. Chem. Soc. 1991,
113, 8375.
(7) (a) Tsujiyama, S.; Ueno, M. Biosci. Biotechnol. Biochem. 2008, 72,
212. (b) Nomura, E.; Hosoda, A.; Mori, H.; Taniguchi, H. Green Chem.
2005, 7, 863. (c) Nomura, E.; Kashiwada, A.; Hosoda, A.; Nakamura, K.;
Morishita, H.; Tsuno, T.; Taniguchi, H. Bioorg. Med. Chem. 2003, 11, 3807.
(10) (a) Lu, P.; Sanchez, C.; Cornella, J.; Larrosa, I. Org. Lett. 2009,
11, 5710. (b) Goossen, L. J.; Linder, C.; Rodriguez, N.; Lange, P. P.; Fromm,
A. Chem. Commun. 2009, 7173. (c) Cornella, J.; Sanchez, C.; Banawa, D.;
Larrosa, I. Chem. Commun. 2009, 7176.
594
Org. Lett., Vol. 12, No. 3, 2010