catalyzed ring-opening of a 1,2-cyclopropaneacetylated sugar
and subsequent glycosylation with various glycosyl acceptors
for stereoselective synthesis of 2-acetonyl-2-deoxy-D-galac-
topyranosyl conjugates.
Scheme 1
.
Synthesis of Glycosyl Conjugates with 2-keto-Gal
Residue3,4
The straightforward synthesis of galactose-derivative cy-
clopropane donor 5 commenced with the known allyl
C-galactoside 1.17 Mild oxidation of 1 with IBX followed
by NaBH4-mediated highly diastereoselective reduction
provided the epimeric allyl C-taloside 2 in excellent yield.
Tosylation of 2′-OH gave 3, and subsequent terminal olefin
oxidation with Hg(OAc)2/Jones reagent afforded 1-C-D-
talosyl acetone 4. Intramolecular SN2 reaction of compound
4 under K2CO3/DMSO conditions produced the desired 1,2-
cyclopropaneacetylated sugar 5 as the main product (Scheme
2). Extensive NMR studies and other analytical methods
confirmed that compound 5 was a pure diastereoisomer with
a trans configuration at bridged C1′ as indicated by the NOEs
between H1′, H3 and H5, which were supported by the
coupling constants (JH1, H1′ ) 2.1 Hz).18,19
Given the complex nature of the chemoenzymatic or
biological synthesis of glycans and glycoconjugates with
2-keto-Gal residuesrelying on the availability of different
wild-type and mutant glycosyltransferases, and UDP-2-keto-
Galsit is not surprising that access to diverse and chemically
defined glycoform mimics through the above the pathways
is difficult (Scheme 1). In this context, we presumed that it
could be a preferred strategy to assemble these modified
glycoforms through chemical glycosylation method. In
addition, as the UDP-2-keto-Gal precursor, peracetylated
2-acetonyl-2-deoxy-galactose,4,10 is not suitable for large-
scale glycosylation reactions as glycosyl donor due to the
synthetic route suffering from poor yield (3 steps, < 10%),
we were therefore attracted to the use of cyclopropanated
sugars as glycosyl donors.
Scheme 2. Synthesis of 1,2-Cyclopropaneacetylated Sugar 5
1,2-Cyclopropanated glycosyl donors have been investi-
gated and employed in the preparation of 2-C-branched
glycosides11 and ring expanded heptanosides12 as a result
of the versatile reactivity of cyclopropyl ring strain. Most
of these unsubstituted, and ester or halo substituted sugar
cyclopropanes are synthesized from glycals through 1,2-
cyclopropanation, and they undergo ring-opening via sol-
volysis, providing anomeric mixtures of 2-C-branched mono-
saccharides,13 or Lewis acid-assisted pyran ring expansion
to oxepanes.14 Unfortunately, only Zeise’s dimer ([Pt(C2H4)-
Cl2]2)15 and NIS/TMSOTf,16 have been found to be effective
for promoting the glycosylation of 1,2-cyclopropanated sugar
donors with sugar alcohols. Herein, we report the Lewis acid-
Unexpectedly, the galactose-derivative cyclopropane 5, in
CDCl3, rapidly generated the hemiacetal 6 as a 2:1 mixture
of R- and ꢀ-isomers (Scheme 3), whereas the structurally
similar glucose cyclopropane existed stably in the same
deuterated solvent.19 This indicated that cyclopropane ring
of 5 was highly reactive and it might be usable as an effective
glycosyl donor.
(13) (a) Scott, R. W.; Heathcock, C. H. Carbohydr. Res. 1996, 291,
205–208. (b) Kim, C.; Hoang, R.; Theodorakis, E. A. Org. Lett. 1999, 1,
1295–1297. (c) Hoberg, J. O.; Claffey, D. J. Tetrahedron Lett. 1996, 37,
2533–2536. (d) Ramana, C. V.; Murali, R.; Nagarajan, M. J. Org. Chem.
1997, 62, 7694–7703. (e) Gammon, D. W.; Kinfe, H. H. J. Carbohydr.
Chem. 2007, 26, 141–157. (f) Yu, M.; Pagenkopf, B. L. Tetrahedron 2003,
59, 2765–2771.
(7) (a) Khidekel, N.; Arndt, S.; Lamarre-Vincent, N.; Lippert, A.; Poulin-
Kerstien, K. G.; Ramakrishnan, B.; Qasba, P. K.; Hsieh-Wilson, L. C. J. Am.
Chem. Soc. 2003, 125, 16162–16163. (b) Tai, H. C.; Khidekel, N.; Ficarro,
S. B.; Peters, E. C.; Hsieh-Wilson, L. C. J. Am. Chem. Soc. 2004, 126,
10500–10501. (c) Boeggeman, E.; Ramakrishnan, B.; Kilgore, C.; Khidekel,
N.; Hsieh-Wilson, L. C.; Simpson, J. T.; Qasba, P. K. Bioconjugate Chem.
2007, 18, 806–814.
(14) (a) Hoberg, J. O.; Bozell, J. J. Tetrahedron Lett. 1995, 36, 6831–
6834. (b) Hoberg, J. O. J. Org. Chem. 1997, 62, 6615–6618. (c) Batchelor,
R.; Hoberg, J. O. Tetrahedron Lett. 2003, 44, 9043–9045.
(15) (a) Beyer, J.; Madsen, R. J. Am. Chem. Soc. 1998, 120, 12137–
12138. (b) Beyer, J.; Skaanderup, P. R.; Madsen, R. J. Am. Chem. Soc.
2000, 122, 9575–9583.
(8) Pasek, M.; Ramakrishnan, B.; Boeggeman, E.; Manzoni, M.;
Waybright, T. J.; Qasba, P. K. Bioconjugate Chem. 2009, 20, 608–618.
(9) (a) Qasba, P. K.; Ramakrishnan, B.; Boeggeman, E. AAPS J. 2006,
8, E190-195. (b) Ramakrishnan, B.; Boeggeman, E.; Qasba, P. K. Expert
Opin. Drug Del. 2008, 5, 149–153. (c) Murrey, H. E.; Hsieh-Wilson, L. C.
Chem. ReV. 2008, 108, 1708–1731. (d) Wang, Z.; Park, K.; Comer, F.;
Hsieh-Wilson, L. C.; Saudek, C. D.; Hart, G. W. Diabetes 2009, 58, 309–
317.
(16) Sridhar, P. R.; Kumar, P. V.; Seshadri, K.; Satyavathi, R.
Chem.sEur. J. 2009, 15, 7526–7529.
(17) Cipolla, L.; La Ferla, B.; Lay, L.; Peri, F.; Nicotra, F. Tetrahedron:
Asymmetry 2000, 11, 295–303.
(10) 2-Acetonyl-2-deoxy-galactose (2-keto-Gal) was primarily prepared
from D-galactal as starting material to undergo iodination, Keck radical
(18) Proton-proton coupling constants in a cyclopropane system: J )
0-6 Hz for a trans stereochemistry and J ) 8-10 Hz for a cis
stereochemistry. See: (a) Kawabata, N.; Nakagawa, T.; Nakao, T.; Ya-
mashita, S. J. Org. Chem. 1977, 42, 3031–3035. (b) Wiberg, K. B.; Barth,
coupling, and ozonolysis. See ref 4
.
(11) For reviews, see: (a) Cousins, G. S.; Hoberg, J. O. Chem. Soc.
ReV. 2000, 29, 165–174. (b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005,
61, 321–347.
D. E.; Schertler, P. H. J. Org. Chem. 1973, 38, 378–381
.
(12) (a) Batchelor, R.; Harvey, J. E.; Northcote, P. T.; Teesdale-Spittle,
P.; Hoberg, J. O. J. Org. Chem. 2009, 74, 7627–7632. (b) Hoberg, J. O.
Tetrahedron 1998, 54, 12631–12670.
(19) (a) Shao, H. W.; Ekthawatchai, S.; Wu, S. H.; Zou, W. Org. Lett.
2004, 6, 3497–3499. (b) Shao, H. W.; Ekthawatchai, S.; Chen, C. S.; Wu,
S. H.; Zou, W. J. Org. Chem. 2005, 70, 4726–4734
.
Org. Lett., Vol. 12, No. 3, 2010
541