´ˇ
M. Lukac et al. / European Journal of Medicinal Chemistry 44 (2009) 4970–4977
4972
Hexadecyl [2-(N,N,N-trimethylammonio)ethyl] phosphate ꢂ 1.5
H2O (HPC): yield 17.2%; 1H NMR (CDCl3, TMS)
0.88 (t, 3H,
2.2.4. General procedure for the preparation of APCs from choline
bromides
d
J ¼ 6.7 Hz), 1.22–1.47 (m, 26H), 1.54–1.64 (m, 2H), 2.37 (s, 3H), 3.41
Hexadecanol (2 mmol) was treated with phosphorous oxy-
chloride (2.1 mmol) and triethylamine (3 mmol) in THF. The solu-
tion was hydrolyzed with 1.5 ml H2O for 1 h and evaporated in
vacuo. A pyridinium salt was prepared by treatment with pyridine
(16 ml) for 2 h at 50 ꢁC. Pyridinium hexadecyl phosphate was
coupled with 2c or 2h (3 mmol) in the presence of a condensing
agent 2,4,6-triisopropylbenzenesulfonyl chloride. APC was purified
by the procedure described in the previous method for preparation
of APC from choline p-toluenesulfonates.
(s, 3H), 3.78–3.86 (m, 4H), 4.25–4.34 (m, 2H); 13C NMR (CDCl3, TMS)
d
14.1, 22.7, 25.9, 29.4, 29.5, 29.7, 31.0, 31.1, 31.9, 54.5, 59.2, 65.6,
66.4; 31P NMR (CDCl3, H3PO4)
d
ꢀ0.78; IR ymax/cmꢀ1 3425, 2923,
2852, 1644, 1468, 1250, 1088, 967, 720.
Hexadecyl [2-(N,N-Diethyl-N-methylammonio)ethyl] phos-
phate ꢂ 2.5 H2O (HPDEt): yield 16.7%; 1H NMR (CDCl3, TMS)
d 0.88
(t, 3H, J ¼ 6.7 Hz), 1.18–1.41 (m, 32H), 1.55–1.67 (m, 2H), 1.82 (s, 5H),
3.28 (s, 3H), 3.53–3.86 (m, 4H), 3.70–3.77 (m, 2H), 3.85 (q, 2H,
J ¼ 6.5 Hz), 4.28–4.37 (m, 2H); 13C NMR (CDCl3, TMS) 8.1, 14.1, 22.7,
25.9, 29.4, 29.5, 29.7, 31.0, 31.9, 48.4, 56.9, 58.5, 61.4, 65.5; 31P NMR
Hexadecyl 2-[N-Methyl-N,N-dipropylammonio]ethyl phosphate
ꢂ H2O (HPDPr): yield 13.6%; 1H NMR (CDCl3, TMS)
d 0.88 (t, 3H,
(CDCl3, H3PO4)
d
ꢀ0.63; IR ymax/cmꢀ1 3440, 2922, 2852, 1645, 1467,
J ¼ 6.7 Hz), 1.03 (t, 6H, J ¼ 7.3 Hz), 1.19–1.37 (m, 26H), 1.55–1.66 (m,
2H), 1.68–1.83 (m, 4H), 2.33 (s, 2H), 3.32 (s, 3H), 3.36–3.47 (m, 4H),
3.74–3.80 (m, 2H), 3.84 (q, 2H, J ¼ 6.7 Hz), 4.28–4.36 (m, 2H); 13C
1247, 1084, 966, 766, 722.
Hexadecyl [2-(N-Methylpyrrolidinio)ethyl] phosphate ꢂ 1.5 H2O
(HPPyr): yield 23.3%; 1H NMR (CDCl3, TMS)
d
0.88 (t, 3H, J ¼ 6.6 Hz),
NMR (CDCl3, TMS) d 10.7, 14.1, 16.0, 22.7, 25.9, 29.4, 29.5, 29.7, 31.0,
1.19–1.36 (m, 26H), 1.55–1.65 (m, 2H), 2.13–2.34 (m, 7H), 3.31 (s,
31.1, 31.9, 49.6, 58.5, 62.4, 63.6, 65.5, 65.6; 31P NMR (CDCl3, H3PO4)
3H), 3.77–3.90 (m, 8H), 4.29–4.38 (m, 2H); 13C NMR (CDCl3, TMS)
d
ꢀ0.48; IR ymax/cmꢀ1 3443, 2923, 2854, 1646, 1467, 1247, 1095,
d
14.1, 22.7, 25.9, 29.4, 29.5, 29.7, 31.0, 31.1, 31.9, 48.3, 58.5, 60.8,
1075, 960, 761, 722.
60.9, 64.6, 65.6, 65.7; 31P NMR (CDCl3, H3PO4)
d
ꢀ0.86; IR ymax/cmꢀ1
Hexadecyl 2-(N-Methylazocanio)ethyl phosphate ꢂ 2 H2O
3399, 2919, 2851, 1653, 1467, 1249, 1081, 1000, 967, 768, 722.
(HPAzoc): yield 20.4%; 1H NMR (CDCl3, TMS)
d 0.88 (t, 3H,
Hexadecyl [2-(N-Methylpiperidinio)ethyl] phosphate ꢂ 2.5 H2O
J ¼ 6.7 Hz),1.22–1.38 (m, 26H),1.55–1.79 (m, 8H),1.90–2.01 (m, 4H),
(HPPip): yield 10.4%; 1H NMR (CDCl3, TMS)
d
0.88 (t, 3H,
2.08 (s, 4H), 3.37 (s, 3H), 3.54–3.73 (m, 4H), 3.80–3.90 (m, 4H),
J ¼ 6.6 Hz), 1.20–1.38 (m, 26H), 1.55–1.66 (m, 2H), 1.67–1.77 (m,
2H), 1.84–1.96 (m, 4H), 2.31 (s, 5H), 3.38 (s, 3H), 3.50–3.60 (m,
2H), 3.64–3.75 (m, 2H), 3.80–3.90 (m, 4H), 4.28–4.38 (m, 2H); 13C
4.28–4.37 (m, 2H); 13C NMR (CDCl3, TMS)
d 14.1, 22.0, 22.7, 24.5,
25.9, 26.2, 29.4, 29.5, 29.7, 31.0, 31.1, 31.9, 50.8, 58.7, 60.9, 63.8, 65.5,
65.6; 31P NMR (CDCl3, H3PO4)
2851, 1648, 1467, 1229, 1080, 1000, 962, 751, 722.
d
ꢀ0.64; IR ymax/cmꢀ1 3394, 2922,
NMR (CDCl3, TMS)
d
14.1, 20.2, 21.0, 22.7, 25.9, 29.4, 29.5, 29.7,
31.0, 31.1, 31.9, 48.8, 58.4, 62.2, 63.9, 65.5, 65.6; 31P NMR (CDCl3,
H3PO4)
d
ꢀ0.92; IR ymax/cmꢀ1 3441, 2919, 2851, 1650, 1467, 1250,
2.2.5. General method for the preparation of QUATs
1073, 971, 770, 722.
N-Methylated heterocycles or dialkylamines (0.01 mol)
prepared by Eschweiler–Clarke methylation [30], and 1-bromo-
hexadecane (0.011 mol) were added to 30 ml of dry acetonitrile,
and then heated under reflux for 12 h. After having distilled the
solvent off in vacuum the drying of the product was completed by
azeotropic distillation with toluene or benzene. The quaternary
ammonium salt was precipitated by diethyl ether. The precipitate
was then filtered off and the crude product was recrystallized
several times from a mixture of acetone/methanol.
Hexadecyl [2-(N-Methylazepanio)ethyl] phosphate ꢂ 1.5 H2O
(HPAzep): yield 16.5%; 1H NMR (CDCl3, TMS)
d 0.88 (t, 3H,
J ¼ 6.7 Hz), 1.22–1.48 (m, 26H), 1.56–1.67 (m, 2H), 1.69–1.76 (m, 4H),
1.87–1.96 (m, 4H), 2.12 (s, 3H), 3.39 (s, 3H), 3.48–3.58 (m, 2H), 3.74–
3.89 (m, 6H), 4.30–4.38 (m, 2H); 13C NMR (CDCl3, TMS)
d 14.1, 21.9,
22.7, 26.0, 27.9, 29.4, 29.5, 29.7, 31.0, 31.1, 31.9, 51.8, 58.8, 65.2, 65.3,
65.5; 31P NMR (CDCl3, H3PO4)
2851, 1648, 1467, 1264, 1082, 1002, 962, 766, 722.
d
ꢀ0.84; IR ymax/cmꢀ1 3388, 2921,
Hexadecyl [2-(N-Methylmorpholinio)ethyl] phosphate ꢂ 1.5
N,N-Dietyl-N-methylhexadecylammonium bromide (CMDEt):
H2O (HPMorph): yield 10.8%; 1H NMR (CDCl3, TMS)
d
0.88 (t, 3H,
yield 82%; 1H NMR (CDCl3, TMS)
d
0.88 (t, 3H, J ¼ 6.6 Hz), 1.2–1.54
J ¼ 6.6 Hz), 1.22–1.46 (m, 26H), 1.54–1.63 (m, 2H), 2.75 (s, 3H), 3.53
(m, 32H), 1.63–1.78 (m, 2H), 3.28 (s, 3H), 3.36–3.45 (m, 2H), 3.63 (q,
(s, 3H), 3.68–3.84 (m, 6H), 3.99–4.08 (m, 6H), 4.30–4.39 (m, 2H); 13C
4H, J ¼ 7.2 Hz); 13C NMR (CDCl3, TMS)
d 8.3, 14.1, 22.4, 22.7, 26.4,
NMR (CDCl3, TMS)
d
14.1, 22.7, 25.9, 29.4, 29.5, 29.7, 31.0, 31.1, 31.9,
29.2, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 47.9, 56.6, 60.5; IR ymax/cmꢀ1
2919, 2849, 1469, 720.
48.3, 58.4, 60.8, 60.9, 64.6, 65.6, 65.7; 31P NMR (CDCl3, H3PO4)
d
ꢀ0.56; IR ymax/cmꢀ1 3435, 2922, 2851, 1646, 1468, 1251, 1095,
N-Methyl-N,N-dipropylhexadecylammonium bromide (CMDPr):
1079, 962, 755, 722.
yield 74%; 1H NMR (CDCl3, TMS)
d
0.88 (t, 3H, J ¼ 6.6 Hz), 1.06 (t, 6H,
J ¼ 7.2 Hz) 1.2–1.48 (m, 26H), 1.64–1.87 (m, 6H), 3.35 (s, 3H), 3.41–
3.53 (m, 6H); 13C NMR (CDCl3, TMS)
10.8, 14.1, 16.1, 22.5, 22.7, 26.4,
2.2.3. General procedure for the quaternization of N-methylazocane
or N-methyl-N,N-dipropylamine with 2-bromoethanol
d
28.7, 29.2, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 49.0, 61.7, 63.1; IR ymax
/
N-Methyl-N,N-dipropylamine or N-methylazocane (0.01 mol),
prepared by Eschweiler-Clarke methylation [30] of dipropylamine
or azocane, was quaternized with 2-bromoethanol (0.012 mol) in
acetonitrile. The mixture was refluxed for 4 h. After cooling, the
acetonitrile was evaporated in vacuum. The resulting mixture was
triturated with ether and crystallized from acetone. White hygro-
scopic solid was obtained after crystallization.
cmꢀ1 2917, 2851, 1471, 718.
N,N-Dibutyl-N-methylhexadecylammonium bromide (CMDBu):
yield 66%; 1H NMR (CDCl3, TMS)
0.88 (t, 3H, J ¼ 6.6 Hz), 1.01 (t, 6H,
J ¼ 7.3 Hz), 1.21–1.53 (m, 30H), 1.64–1.79 (m, 6H), 3.38 (s, 3H), 3.43–
d
3.57 (m, 6H); 13C NMR (CDCl3, TMS)
d 13.7, 14.1, 19.7, 22.5, 22.7, 24.4,
26.3, 29.2, 29.4, 29.5, 29.6, 29.7, 31.9, 48.9, 61.3, 61.4; IR ymax/cmꢀ1
2920, 2851, 1468, 721.
N-(2-hydroxyethyl)-N-methyl-N-propylpropan-1-ammonium
N-Hexadecyl-N-methylpyrrolidinium bromide (CMPyr): yield
bromide (2c): yield 68%; 1H NMR (DMSO-d6, TMS)
d
1.05 (t, 6H,
76%; 1H NMR (CDCl3, TMS)
d
0.88 (t, 3H, J ¼ 6.7 Hz), 1.20–1.46 (m,
26H), 1.71–1.83 (m, 2H), 2.25–2.37 (m, 4H), 3.32 (s, 3H), 3.62–3.70
(m, 2H), 3.78–3.94 (m, 4H); 13C NMR (CDCl3, TMS)
14.1, 21.7, 22.7,
J ¼ 7.0 Hz), 1.72–2.08 (m, 4H), 3.33 (s, 3H), 3.41–3.57 (m, 4H), 3.68–
3.78 (m, 4H), 4.09–4.20 (m, 2H), 5.10 (t, 1H, J ¼ 4.9 Hz).
d
N-(2-hydroxyethyl)-N-methylazocanium bromide (2h): yield
24.1, 26.4, 29.3, 29.4, 29.5, 29.6, 29.7, 31.9, 48.6, 64.1, 64.4; IR ymax/
92%; 1H NMR (DMSO-d6, TMS)
d
1.45–1.71 (m, 6H), 1.79–1.98 (m,
cmꢀ1 2918, 2851, 1467, 721.
4H), 3.05 (s, 3H), 3.06–3.56 (m, 6H), 3.79–3.87 (m, 2H), 5.26 (t, 1H,
J ¼ 4.9 Hz).
N-Hexadecyl-N-methylpiperidinium bromide (CMPip): yield
69%; 1H NMR (CDCl3, TMS)
d
0.88 (t, 3H, J ¼ 6.7 Hz), 1.21–1.47 (m,