pubs.acs.org/joc
in organofluorine chemistry. This is reflected by the numer-
Synthesis of 4-Substituted 3,3-Difluoropiperidines
ous papers in this area as an answer to the increased need for
new fluorinated building blocks for applications in agro-
chemistry and pharmaceutical chemistry.1 Recently, we
published convenient routes for the preparation of 3-amino-
methyl-3-fluoropiperidines2 and 3-alkoxy-4,4-difluoro-
piperidines,3 and we introduced new entries toward valuable
2-substituted 3,3-difluoropiperidines via electrophilic R-fluori-
nation of imines using N-fluorodibenzenesulfonimide (NFSI).4
4-Substituted 3,3-difluoropiperidines showed already their
importance in medicinal chemistry; however, only limited
synthetic pathways are available.5 Focus was directed to a
general synthetic route toward 4-substituted 3,3-difluoro-
piperidines with application to the synthesis of 3,3-difluoro-
isonipecotic acid, a new γ-amino acid and potential GABAA
agonist.6 Also 3,3-difluoro-4-piperidinone is a promising
building block because 4-piperidones serve an important
role as intermediates of bioactive piperidines.7 In contrast
to 3-fluoro-4-piperidinone,8 only one synthetic route to 3,3-
difluoro-4-piperidinone has been described recently via a
Reformatsky reaction of ethyl bromodifluoroacetate, zinc,
and ethyl 3-(benzotriazol-1-ylmethylbenzylamino)pro-
pioniate, followed by cyclization.9 Deoxofluorination of
3-piperidinones is the most obvious way to synthesize
4-substituted 3,3-difluoropiperidines, although DAST
((diethylamino)sulfur trifluoride) is a reagent with limited
stability and functional group tolerance and can induce re-
arrangements. Moreover, low yields were reported for the
deoxofluorination of 4-substituted 3-piperidinones.10 Highly
substituted 3,3-difluoropiperidines have been synthesized for
the preparation of anti-Alzheimer’s agents and glycosidase
inhibitors.11,12 Earlier work from Beeler et al. resulted in a
,^
Riccardo Surmont, ,§ Guido Verniest,
Jan Willem Thuring,z Gregor Macdonald,z
Frederik Deroose,z and Norbert De Kimpe*,
Department of Organic Chemistry, Faculty of Bioscience
Engineering, Ghent University, Coupure Links 653, B-9000
Gent, Belgium and Johnson & Johnson Pharmaceutical
z
Research & Development, a Division of Janssen
Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse,
Belgium. §Aspirant of the Research Foundation-Flanders
(FWO-Vlaanderen, Belgium). ^Postdoctoral Fellow of the
Research Foundation-Flanders (FWO-Vlaanderen,
Belgium).
Received October 8, 2009
Synthetic strategies toward 4-substituted 3,3-difluoro-
piperidines were evaluated. 4-Alkoxymethyl- and 4-aryloxy-
methyl-3,3-difluoropiperidines were synthesized via 1,4-
addition of ethyl bromodifluoroacetate to 3-substituted
acrylonitriles in the presence of copper powder, followed
by borane reduction of the cyano substituent, lactamiza-
tion, and reduction of the lactam. This method was applied
to establish the synthesis of N-protected 3,3-difluoroiso-
nipecotic acid, a fluorinated γ-amino acid. 4-Benzyloxy-
3,3-difluoropiperidine was prepared using an analogous
methodology and was converted to N-protected 3,3-di-
fluoro-4,4-dihydroxypiperidine, a compound with high po-
tential as a building block in medicinal chemistry.
(2) Van Hende, E.; Verniest, G.; Thuring, J. W.; Macdonald, G.;
Deroose, F.; De Kimpe, N. Synlett 2009, 1765.
(3) Surmont, R.; Verniest, G.; De Weweire, A.; Thuring, J. W.;
Macdonald, G.; Deroose, F.; De Kimpe, N. Synlett 2009, 1933.
(4) Verniest, G.; Surmont, R.; Van Hende, E.; De Weweire, A.; Deroose,
F.; Thuring, J. W.; De Kimpe, N. J. Org. Chem. 2008, 73, 5458 and references
cited therein.
(5) (a) Masuya, K.; Yokokawa, F.; Irie, O.; Nihonyanagi, A.; Toyao, A.; Ehara,
T.; Konishi, K.; Kanazawa, T.; Suzuki, M. PCT Int. Appl. WO 2006094763, 2006;
Chem. Abstr. 2006, 145, 335938. (b) Castro Pineiro, J. L.; Dinnell, K.; Elliot,
J. M.; Hollingworth, G. J.; Shaw, D. E.; Swain, C. J. PCT Int. Appl. WO
2001087838, 2001; Chem. Abstr. 2001, 136, 5907.
(6) (a) Krehan, D.; Frølund, B.; Krogsgaard-Larsen, P.; Kehler, J.;
Johnston, G. A. R.; Chebib, M. Neurochem. Int. 2003, 42, 561. (b) Antane,
S. Synth. Commun. 2003, 33, 2145 and references cited therein. (c) Fan, J.; Fahr,
B.; Stockett, D.; Chan, E.; Cheeti, S.; Serafimova, I.; Lu, Y.; Pham, P.; Walker,
D. H.; Hoch, U.; Choong, I. C. Bioorg. Med. Chem. Lett. 2008, 18, 6236.
(d) Crider, A. M.; Tita, T. T.; Wood, J. D.; Hinko, C. N. J. Pharm. Sci. 1982, 71,
1214.
(7) Mukhtar, T. A.; Wright, G. D. Chem. Rev. 2005, 105, 529.
(8) van Niel, M. B.; Collins, I.; Beer, M. S.; Broughton, H. B.; Cheng,
S. K. F.; Goodacre, S. C.; Heald, A.; Locker, K. L.; MacLeod, A. M.;
Morrison, D.; Moyes, C. R.; O’Connor, D.; Pike, A.; Rowley, M.; Russel,
N.; Sohal, B.; Stanton, J. A.; Thomas, S.; Verrier, H.; Watt, A. P.; Castro,
J. L. J. Med. Chem. 1999, 42, 2087.
The unique properties of fluorine as a substituent in
organic compounds have an undisputed effect on their
bioactivity and have dramatically intensified the research
*Corresponding author. Phone: þ32 (0)9 264 59 51. Fax: þ32 (0)9 264 62
(9) Marmsaeter, F. P.; Munson, M. C.; Rizzi, J. P.; Robinson, J. E.;
Schlachter, S. T.; Topalov, G. T.; Zhao, Q.; Lyssikatos, J. P. PCT Int. Appl.
WO 2008121687, 2008; Chem. Abstr. 2008, 149, 448388.
43.
(1) (a) Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry;
ꢀ
ꢀ
John Wiley & Sons: New York, 1991 and references cited therein. (b) Begue, J.-P.;
Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine; John
Wiley & Sons: Hoboken, NJ, 2008. (c) O'Hagan, D. Chem. Soc. Rev. 2008, 37,
308. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev.
2008, 37, 320. (e) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305. (f ) M€uller,
K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(10) Huang, H.; Hutta, D. A.; Rinker, J. M.; Hu, H.; Parsons, W. H.;
Schubert, C.; DesJarlais, R. L.; Crysler, C. S.; Chaikin, M. A.; Donatelli,
R. R.; Chen, Y.; Cheng, D.; Zhou, Z.; Yurkow, E.; Manthey, C. L.; Player,
M. R. J. Med. Chem. 2009, 52, 1081.
(11) Stanton, M. G.; Munoz, B.; Sloman, D. L.; Hubbs, J.; Hamblett, C.
PCT Int. Appl. WO 2008030391, 2008; Chem. Abstr. 2008, 148, 331574.
DOI: 10.1021/jo902164z
r
Published on Web 01/05/2010
J. Org. Chem. 2010, 75, 929–932 929
2010 American Chemical Society