pubs.acs.org/joc
ability of the OH group, but has been achieved with some
Boronic Acid Catalyzed Friedel-Crafts Reactions of
Allylic Alcohols with Electron-Rich Arenes and
Heteroarenes.
success in recent years with the use of π-activated alcohols
as electrophiles.4 Allylic, propargylic, and benzylic alcohols
(or combinations thereof) lead to resonance-stabilized car-
bocations that can be generated under mild conditions. The
products of these reactions have the added advantage of
functionality that may be further elaborated.
J. Adam McCubbin,* Hamidreza Hosseini, and
Oleg V. Krokhin
Several classes of catalysts have been successfully applied
to the FC reaction of allylic alcohols, including Bronstead
acids,5 conventional Lewis acids,6 and transition metals.7 So
far, reaction scope in terms of allylic alcohols, particularly
with respect to cyclic ones, remains limited. Given the nature
of the proposed allylic carbocation intermediates, regioselec-
tivity in terms of the sight of nucleophilic attack can be
problematic. In several cases, a large excess of the nucleo-
phile is required, and all of the methods reported require
either strongly acidic or toxic and often expensive metal-
based catalysts. Thus, an environmentally benign, mild,
selective, and recoverable catalyst would be a useful alter-
native.
Department of Chemistry, University of Winnipeg,
515 Portage Avenue, Winnipeg, MB R3B 2E9, Canada
Received October 28, 2009
Diversely substituted arylboronic acids are widely avail-
able due primarily to their common use in Suzuki-Miyaura
cross-coupling reactions.8 In contrast to their use as reac-
tants, there are only sporadic reports of their use as cata-
lysts,9 despite several attractive features, including the Lewis
acidity of the boron atom, their ability to complex with
Pentafluorophenylboronic acid catalyzes the regioselec-
tive coupling of structurally diverse allylic alcohols with a
variety of electron-rich aromatic and heteroaromatic
substrates under ambient conditions. The commercially
available catalyst is recoverable and air and moisture
stable, and the reaction produces water as the only
byproduct.
(4) For an excellent review, see: Bandini, M.; Tragni, M. Org. Biomol.
Chem. 2009, 7, 1501.
(5) (a) Liu, Y.-L.; Liu, L.; Wang, Y.-L.; Han, Y.-C.; Wang, D.; Chen,
Y.- J. Green Chem. 2008, 10, 635. (b) Sanz, R.; Martinez, A.; Miguel, D.;
Alvarez-Gutirrrez, J. M.; Rodriguez, F. Adv. Synth. Catal. 2006, 348, 1841.
(c) Sanz, R.; Martinez, A.; Alvarez-Gutirrrez, J. M.; Rodriguez, F. Eur. J.
Org. Chem. 2006, 1383. (d) Bras, J. L.; Muzart, J. Tetrahedron 2007, 63, 7942.
(6) Intermolecular: (a) Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem.,
Int. Ed. 2006, 45, 793. (b) Yadav, J. S; Subba Reddy, B. V.; Aravind, S.;
Narayana, G. G. K. S.; Reddy, S. Tetrahedron Lett. 2007, 48, 6117. (c) Jana,
U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2007, 48, 7160. (d) Rao, W.; Chan,
P. W. H. Org. Biomol. Chem. 2008, 6, 2426. (e) Noji, M.; Konno, Y.; Ishii, K.
J. Org. Chem. 2007, 72, 5151. (f) Jana, U.; Biswas, S.; Maiti, S. Tetrahedron
Lett. 2007, 48, 4065. Intramolecular: (g) Namba, K.; Yamamoto, H.; Sasaki,
I.; Mori, K.; Imagawa, H.; Nishizawa, M. Org. Lett. 2008, 10, 1767.
(h) Bandini, M.; Eichholzer, A.; Kotrusz, P.; Tragni, M.; Troisi, S.; Umani-
Ronchi, A. Adv. Synth. Catal. 2009, 351, 319.
Since its discovery over 130 years ago,1 the Friedel-Crafts
(FC) alkylation reaction has been established as a powerful
and versatile method for C-C bond formation.2 This is due
primarily to its broad scope and ability to directly functio-
nalize rings at a C-H bond.3 Significant disadvantages of
classical methods, primarily due to environmental concerns,
have been addressed to some extent, namely their reliance on
harsh reaction conditions, stoichiometric quantities of elec-
trophile activators, and the resulting waste produced. From
an environmental and atom-economical standpoint, the
ideal FC process would be catalytic and employ hydroxide
as a leaving group on the electrophile and, thus, generate
only water as a byproduct of the reaction. This approach has
so far been limited, primarily by the poor leaving group
(7) Pd: (a) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am.
Chem. Soc. 2005, 127, 4592. (b) Trost, B. M.; Quancard, J. J. Am. Chem. Soc.
2006, 128, 6314. (c) Usui, I.; Schmidt, S.; Keller, M.; Breit, B. Org. Lett. 2008,
10, 1207. Ru: (d) Zaitsev, A. B.; Gruber, S.; Pregosin, P. S. Chem. Commun.
€
2007, 4692. (e) Zaitsev, A. B.; Gruber, S.; Pluss, P. A.; Pregosin, P. S.; Veiros,
L. F.; Worle, M. J. Am. Chem. Soc. 2008, 130, 11604. (f) Onodera, G.;
€
Imajima, H.; Yamanashi, M.; Nishibayashi, Y.; Hidai, M.; Uemura, S.
Organometallics 2004, 23, 5841. (g) Huang, J.; Zhou, L.; Jiang, H. Angew.
Chem., Int. Ed. 2006, 45, 1945. (h) Yokoyama, Y.; Takagi, N.; Hikawa, H.;
Kaneko, S.; Tsubaki, N.; Okuno, H. Adv. Synth. Catal. 2007, 349, 662.
(8) For reviews, see: (a) Metal Catalyzed Cross Coupling Reactions; de
Meijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004. (b) Dedicated
special issue of 30 years of cross-coupling: Tamao, K., Hiyama, T., Negishi, E.-i.,
Eds. J. Organomet. Chem. 2002, 653. (c) Walker, S. D.; Barder, T. E.; Martinelli,
J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43, 1871.
(9) See, for example: (a) Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew.
Chem., Int. Ed. 2008, 47, 2876. (b) Tale, R. H.; Adude, R., N. Tetrahedron
Lett. 2006, 47, 7263. (c) Rao, G.; Philipp, M. J. Org. Chem. 1991, 56, 1505.
(d) Debache, A.; Boumold, B.; Amimour, M.; Belfaitah, A.; Rhouati, S.;
Carboni, B. Tetrahedron Lett. 2006, 47, 5697. (e) Debache, A.; Boulcina, R.;
Belfaitah, A.; Rhouati, S.; Carboni, B. Synlett 2008, 509. (f) Letsinger, R. L.;
MacLean, D. B. J. Am. Chem. Soc. 1963, 85, 2230. (g) Maki, T.; Ishihara, H.;
Yamamoto, H. Synlett 2004, 1355. (h) Wipf, P.; Wang, X. J. Comb. Chem.
2002, 4, 656. (i) Tale, R. H.; Patil, K. M.; Dapurkar, S. E. Tetrahedron Lett.
2003, 3427. (j) Tale, R. H.; Patil, K. M. Tetrahedron Lett. 2002, 43, 9715.
(1) (a) Friedel, C.; Crafts, J. M. C.R. Hebd. Seances Acad. Sci. 1877, 84,
1392. (b) Friedel, C.; Crafts, J. M. C. R. Hebd. Seances Acad. Sci. 1877, 84,
1450.
(2) (a) Larock, R. C., Comprehensive Organic Transformations: VCH:
New York, 1999; (b) Olah, G. A.; Krishnamurti, R.; Prakash, G. K. S. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
Oxford, 1991; Vol. 3, pp 293-339. (c) Roberts, R. M.; Khalaf, A. A. Friedel-
Crafts Alkylation Chemistry. A Century of Discovery; Dekker: New York,
1984. (d) Olah, G. A. Friedel-Crafts and Related Reactions; Wiley- Inter-
science: New York, 1964; Vol. II, Part 1.
(3) For a concise review of FC reactions in the context of direct trans-
formations of C-H bonds, see: Dyker, G. In Handbook of C-H Transfor-
mations: Applications in Organic Synthesis; Dyker, G., Ed.; Wiley-VCH:
Weinheim, 2005; Vol. 1, pp 137-142.
DOI: 10.1021/jo9023073
r
Published on Web 01/07/2010
J. Org. Chem. 2010, 75, 959–962 959
2010 American Chemical Society