Notes
Journal of Natural Products, 2010, Vol. 73, No. 8 1429
spectrometer and were referenced to the solvent (CDCl3) and TMS.
LC-MS and HRMS were conducted using a GCT Premier Micromass
spectrometer. X-ray structures were measured with a Rigaku Saturn
CCD area detector equipped with a SHINE optic using Mo KR
radiation. Silicycle Ultrapure silica gel (0-20 µm) G and F-254 was
used for the preparative-layer TLC, and Silicycle Silia-P Ultrapure Flash
silica gel (40-63 µm) was used for flash column chromatography. TLC
was conducted on Polygram SIL G/UV254 precoated plastic sheets.
Solvents were purified using standard conditions before use.
Method a. Formalin (37% HCHO(aq), 2.0 mL) was added to a
solution of 146 (250 mg, 0.75 mmol) in MeOH (6.0 mL). After the
mixture had been stirred at 25 °C for 3 h, NaBH4 (319 mg, 8.44 mmol)
was slowly added. Subsequently, the reaction mixture was stirred at
25 °C for an additional 16 h. Then, aqueous saturated NH4Cl (25 mL)
was added and the mixture was extracted with CH2Cl2 (3 × 30 mL).
The combined organic layers were dried over MgSO4, and after filtering,
the solvent was evaporated under a vacuum to afford a mixture of 2
and 3, which was purified by preparative TLC (silica gel, 20% EtOH
in hexane) to give 2 (78 mg) as a colorless solid, mp 178-179 °C (as
the hydrochloride), and 3 (181 mg) as a colorless solid, mp 257-258
°C.
3418 independent reflections (Rint ) 0.0245). The final R1 values were
0.0325 (I > 2σ(I)), and the final wR(F2) values were 0.0844 (all data).
The goodness of fit on F2 was 1.057. Flack parameter ) 0.0(8). Non-
hydrogen atoms were refined anisotropically, while all hydrogen atoms
were located in difference map positions and refined on a geometry-
constrained (riding) model. CCDC #766064.
Acknowledgment. This work was supported by Memorial University
of Newfoundland, the Natural Sciences and Engineering Research
Council of Canada (NSERC), and the Ministry of Higher Education
of Egypt (for a scholarship to A.L.Z.).
Supporting Information Available: Copies of the spectra and the
crystallographic information files (CIF). This material is available free
for 2 (CCDC 766063) and 3 (CCDC 766064) have been deposited with
the Cambridge Data Centre.
References and Notes
(1) (a) Shamma, M. In The Isoquinoline Alkaloids: Chemistry and
Pharmacology; Blomquist, A. T.; Wasserman, H., Eds.; Academic
Press: New York, 1972; pp 44-152. (b) Brochmann-Hanssen, E.;
Furuya, T. J. Pharm. Sci. 1964, 53, 575. (c) Brochmann-Hanssen, E.;
Nielsen, B. Tetrahedron Lett. 1965, 1271–1274. (d) Brochmann-
Hanssen, E.; Nielsen, B.; Utzinger, G. E. J. Pharm. Sci. 1965, 54,
1531–1532. (e) Toske, S. G.; Cooper, S. D.; Morello, D. R.; Hays,
P. A.; Casale, J. F.; Casale, E. J. Forensic Sci. 2006, 51, 308–320.
(2) Iwasa, K.; Cui, W.; Sugiura, M.; Takeuchi, A.; Moriyasu, M.; Takeda,
K. J. Nat. Prod. 2005, 68, 992–1000, and references therein.
(3) (a) Bhakuni, D. S.; Jain, S. In The Alkaloids: Chemistry and
Pharmacology; Brossi, A., Ed.; Academic Press: New York, 1986;
Vol. 28, pp 95-181. (b) Sy¨antavy, F. In The Alkaloids: Chemistry
and Physiology; Manske, R. H. F., Rodrigo, R. G. A., Eds.; Academic
Press: New York, 1979; Vol. 17, pp 385-544.
Method b. To a stirred solution of 14 (180 mg, 0.54 mmol) and
formalin (37% HCHO(aq), 2.0 mL) in MeCN (1 mL) was added
NaBH3CN (0.294 mg, 0.892 mmol). The reaction mixture was stirred
for 1 h, and HOAc was then added. After being stirred for 1 h, the
reaction mixture was quenched with water and neutralized to pH 8
with aqueous saturated NaHCO3, and the mixture was extracted with
CH2Cl2 (3 × 30 mL). The combined organic layers were dried over
MgSO4, and after filtering, the solvent was evaporated under a vacuum
to afford 3 (175 mg) as a colorless solid, mp 257-258 °C (245-246
°C).16
(S)-(-)-Tetrahydropalmatrubine (2): colorless solid that slowly
developed color on standing, mp 178-179 °C (as the hydrochloride);
1
[R]25 -115 (c 0.09, MeOH) (as the hydrochloride); H NMR δ 6.74
D
(4) Hesse, M. Alkaloids: Nature’s Curse or Blessing; Wiley-VCH:
Weinheim; Chichester, UK, 2002.
(1H, d, J ) 8.5 Hz, H-11), 6.74 (1H, s, H-1), 6.68 (1H, d, J ) 8.5 Hz,
H-12), 6.62 (1H, s, H-4), 4.25 (1H, d, J ) 15.0 Hz, H-8ax), 3.89 (3H,
s, OCH3; C-2), 3.87 (6H, s, OCH3; C-3, C-10), 3.58 (1H, dd, J ) 12.0
and 3.5 Hz, H-13a), 3.53 (1H, d, J ) 15.0 Hz, H-8eq), 3.26 (1H, dd,
J ) 15.5 and 3.5 Hz, H-13eq), 3.23-3.12 (2H, m, H-6eq and H-5eq),
2.84 (1H, dd, J ) 15.5 and 12.0 Hz, H-13ax), 2.69-2.64 (2H, m, H-6ax
and H-5ax); 13C NMR δ 147.5 (C-11), 147.4 (C-10), 144.0 (C-2), 141.5
(C-3), 129.8 (C-13b), 128.1 (C-4a), 126.9 (C-8a), 121.3 (C-12a), 119.3
(C-4), 111.4 (C-12), 108.9 (C-9), 108.7 (C-1), 59.3 (C-13a), 56.2
(OCH3; C-2), 56.1 (OCH3; C-3), 55.9 (OCH3; C-10), 53.5 (C-8), 51.4
(C-6), 36.4 (C-13), 29.1 (C-5); APCIMS m/z 342.1 (M+ + 1, 100);
HREIMS m/z 341.1620 (calcd for C20H23NO4, 341.1614).
(5) (a) Memetzidis, G.; Stambach, J. F.; Jung, L.; Schott, C.; Heitz, C.;
Stoclet, J. C. Eur. J. Med. Chem. 1991, 26, 605–611. (b) Cushman,
M.; Dekow, F. W.; Jacobsen, L. B. J. Med. Chem. 1979, 22, 331–
333. (c) Wilson, W. D.; Gough, A. N.; Doyle, J. J.; Davison, M. W.
J. Med. Chem. 1976, 19, 1261–1263. (d) Zee-Cheng, R. K. Y.; Cheng,
C. C. J. Med. Chem. 1976, 19, 882–886.
(6) Zein, A. L.; Otman, O. O.; Dawe, L. N.; Georghiou, P. E. Tetrahedron
Lett. 2010, 51, 177–180, and references therein.
(7) For a review on Pictet-Spengler cyclization, see: Cox, E. D.; Cook,
J. M. Chem. ReV. 1995, 95, 1797–1842. For examples, see: Munchoff,
M. J.; Meyers, A. I. J. Org. Chem. 1996, 61, 4607–4610. Miller, R. B.;
Tsang, T. Tetrahedron Lett. 1988, 29, 6715–6718. Meyers, A. I.;
Dickman, D. A.; Boes, M. Tetrahedron 1987, 43, 5095–5108. Meyers,
A. I.; Boes, M.; Dickman, D. A. Angew. Chem., Int. Ed. Engl. 1984,
23, 458–459. McMurtrey, K. D.; Meyerson, L. R.; Cashaw, J. L.;
Davis, V. E. J. Org. Chem. 1984, 49, 947–948. Kametani, T.; Nakano,
K.; Shishido, K.; Fukumoto, K. J. Chem. Soc. C 1971, 3350–3354.
(8) See, for example: (a) Venkov, A. P.; Ivanov, I. I. Tetrahedron 1996,
52, 12299–12308. (b) Larsen, R. D.; Reamer, R. A.; Corley, E. G.;
Davis, P.; Grabowski, E. J. J.; Reider, P. J.; Shinkai, I. J. Org. Chem.
1991, 56, 6034–6038. (c) Pandey, G. D.; Tiwari, K. P. Heterocycles
1980, 14, 59–82. (d) Patra, A.; Mukhopadhyay; Mitra, A. K. Indian
J. Chem., Sect. B 1980, 19, 561–562. (e) Pai, B. R.; Natarajan, S.;
Manikumar, G.; Rajaraman, R.; Suguna, H. J. Org. Chem. 1978, 43,
1992–1994. (f) Rajaraman, R.; Pai, B. R.; Premila, M. S.; Suguna, H.
Indian J. Chem., Sect. B 1977, 15, 876–879.
Crystal data for 2: (C20H24NO4)·Cl·2(H2O), prism crystals (of the
hydrochloride) from methanol/HCl, M ) 413.90, monoclinic, a )
11.197(6) Å, b ) 7.218(4) Å, c ) 12.421(7) Å, ꢀ ) 99.841(11)°, V )
989.2(9) Å3, T ) 153(1) K, space group P21 (#4), Z ) 2, µ(Mo KR)
) 0.230 mm-1, 8699 reflections measured, 4013 independent reflections
(Rint ) 0.0451). The final R1 values were 0.0962 (I > 2σ(I)), and the
final wR(F2) values were 0.2646 (all data). The goodness of fit on F2
was 1.051. Flack parameter ) 0.07(18). Non-hydrogen atoms were
refined anisotropically, while all hydrogen atoms were located in
difference map positions and refined on a geometry-constrained (riding)
model. CCDC #766063.
(S)-(-)-Corytenchine (3): colorless, cubic crystals; mp 257-258
1
°C; [R]25 -271 (c 0.09, MeOH); H NMR δ 6.74 (1H, s, H-1), 6.72
D
(9) (a) Mujahidin, D.; Doye, S. Eur. J. Org. Chem. 2005, 2689–2693. (b)
Davis, F. A.; Mohanty, P. K. J. Org. Chem. 2002, 67, 1290–1296. (c)
Kametani, T.; Takagi, N.; Toyata, M.; Honda, T.; Fukumoto, K.
J. Chem. Soc., Perkin Trans. 1 1981, 2830–2834. (d) Czarnocki, Z.;
Arazny, Z. Heterocycles 1999, 51, 2871–2879. (e) Comins, D. L.;
Thakker, P. M.; Baevsky, M. F.; Badawi, M. M. Tetrahedron 1997,
53, 16327–16340.
(1H, s, H-4), 6.62 (1H, s, H-12), 6.56 (1H, s, H-9), 3.93 (1H, d, J )
14.5 Hz, H-8ax), 3.90 (3H, s, OCH3; C-2), 3.87 (3H, s, OCH3; C-10),
3.86 (3H, s, OCH3; C-3), 3.68 (1H, d, J ) 14.5 Hz, H-8eq), 3.57 (1H,
dd, J ) 11.5 and 3.5 Hz, H-13a), 3.21 (1H, dd, J ) 15.5 and 3.5 Hz,
H-13eq), 3.17-3.13 (2H, m, H-6eq and H-5eq), 2.81 (1H, dd, J )
15.5 and 11.5 Hz, H-13ax), 2.69-2.60 (2H, m, H-6ax and H-5ax); 13
C
NMR δ 147.5 (C-11), 147.5 (C-10), 145.1 (C-2), 144.1 (C-3), 129.8
(C-13b), 127.1 (C-4a), 126.7 (C-8a), 125.8 (C-12a), 114.3 (C-4), 111.4
(C-12), 108.6 (C-9), 108.3 (C-1), 59.6 (C-13a), 58.4 (C-8), 56.1 (OCH3;
C-2), 56.0 (OCH3; C-3), 55.9 (OCH3; C-10), 51.4 (C-6), 36.2 (C-13),
29.1 (C-5); APCIMS m/z 342.1 (M+ + 1, 100); HREIMS m/z 341.1627
(calcd for C20H23NO4, 341.1627).
Crystal data for 3: C20H23NO4, colorless prisms from methanol, M
) 341.41, orthorhombic, a ) 7.2621(12) Å, b ) 8.0445(13) Å, c )
28.318(5) Å, V ) 1654.3(5) Å3, T ) 153(1) K, space group P212121
(#19), Z ) 4, µ(Mo KR) ) 0.095 mm-1, 22 912 reflections measured,
(10) (a) Enders, D.; Boudou, M. J. Org. Chem. 2005, 70, 9486–9494. (b)
Meyers, A. I.; Matulenko, M. A. J. Org. Chem. 1996, 61, 573–580.
(11) Cheng, J.-J.; Yang, Y.-S. J. Org. Chem. 2009, 74, 9225–9228.
(12) (a) Chrzanowska, M.; Rozwadowska, M. D. Chem. ReV. 2004, 104,
3341–3370. (b) Rozwadowska, M. D. Heterocycles 1994, 39, 903.
For a recent enantioselective synthesis of some benzyltetrahydroiso-
quinolines via a Bischler-Napieralski approach, see: Pyo, M. K.; Lee,
D.-H.; Kim, D.-H.; Lee, J.-H.; Moon, J.-C.; Chang, K. C.; Yun-Choi,
H. S. Bioorg. Med. Chem. Lett. 2008, 18, 4110–4114.
(13) (a) Wang, Y.; Georghiou, P. E. Org. Lett. 2002, 4, 2675–2678. (b)
For earlier applications of (S)- and (R)-R-methylbenzylamine in a