10.1002/chem.201605034
Chemistry - A European Journal
FULL PAPER
enabled the method to successfully apply in the direct multi-
component dual-modification of the free peptide.
Additionally, the current method was applied into I-125
labeling. In the model reaction, 70% RCY could be
achieved within 10 min using water as the solvent and
commercial 100 μCi sodium [125I]iodide aqueous solution as
the radioactive starting material, which provided an
attractive perspective for the development of concise and
fast multi-component radioactive I125-labelling.
on a C18-bonded silica column. After the reaction was completed, the
solvent was evaporated, and the residue was dissolved in 10% CH3CN
water solution, which was applied to a C18 reversed-phase column
(9.4×250mm). The column was eluted using a linear gradient of 10–85%
CH3CN containing 0.1% TFA over 50 min to give 3w (2.6 mg, 67 %) after
lyophilization.
Acknowledgements
This work provided a novel protocol to resolve the
problems of the high sensitivity to water in this type of
reactions and requirements of stoichiometric copper salt
existed in known methods. Besides, it also presents a rare
Financial support from NSFC (21172058, 21472036, and
21372065) and PCSIRT (IRT1061).
example for efficient tandem of
a water-compatible
Keywords: Aqueous reaction • Iodination • triazole • Click
chemistry • Peptide
iodination and copper-catalyzed alkyne-azide cycloaddition
(CuAAC), which is expected to further expand the usages
of 5-iodo-1,2,3-triazole in the post-modifications of bioactive
molecules, and enrich the toolbox of current CuAAC
systems. The further applications of this method in the
medicinal radiochemistry and multi-purpose bioconjugation
are still undergoing in our lab.
[1]
a) C. Spiteri, J. E. Moses, Angew. Chem. Int. Ed. 2010, 49, 31-33; b) M.
J. Langton, S. W. Robinson, I. Marques, V. Félix, P. D. Beer, Nat.
Chem. 2014, 6, 1039-1043; c) F. Kniep, L. Rout, S. M. Walter, H. K. V.
Bensch, S. H. Jungbauer, E. Herdtweck and S. M. Huber, Chem.
Commun. 2012, 48, 9299-9301.
[2]
a) J. C. Morris, J. Chiche, C. Grellier, M. Lopez, L. F. Bornaghi, A.
Maresca, C. T. Supuran, J. Pouysségur, S.-A. Poulsen, J. Med. Chem.
2011, 54, 6905-6918; b) N. Ahmed, N. K. Konduru, S. Ahmad, M.
Owais, Eur. J. Med. Chem. 2014, 82, 552-564; c) T. Ostrowski, P.
Januszczyk, M. Cieslak, J. Kazmierczak-Baransk, B. Nawrot, E.
Bartoszak-Adamska, J. Zeidler, Bioorg. Med. Chem. 2012, 19, 4386-
4398. d) D. Goyard, A. S. Chajistamatiou, A. I. Sotiropoulou, E. D.
Chrysina, J.-P. Praly, S. Vidal, Chem. Eur. J. 2014, 20, 5423-5432.
a) N. L. Kilah, M. D. Wise, C. J. Serpell, A. L. Thompson, N. G. White, K.
E. Christensen, P. D. Beer, J. Am. Chem. Soc. 2010, 132, 11893-
11895; b) S. W. Robinson, C. L. Mustoe, N. White, A. Brown, A.
L. Thompson, P. Kennepohl, P. D. Beer, J. Am. Chem. Soc. 2015, 137,
499-507; c) D. Goyard, A. S. Chajistamatiou, A. I. Sotiropoulou, E. D.
Chrysina, J.-P. Praly, S. Vidal, Chem. Eur. J. 2014, 20, 5423-5432.
a) E. Schwartz, K. Breitenkamp, V. V. Fokin, Macromolecules 2011, 44,
4735-4741; b) A. R. Bogdan, K. James, Org. Lett. 2011, 13, 4060-4063.
a) R. Yan, E. El-Emir, V. Rajkumar, M. Robson, A. P. Jathoul, R. B.
Pedley, E. Åstad, Angew. Chem. Int. Ed. 2011, 50, 6793-6795; b) R.
Yan, K. Sander, E. Galante, V. Rajkumar, A. Badar, M. Robson, E. El-
Emir, M. F. Lythgoe, R. B. Pedley, E. Åstad, J. Am. Chem. Soc. 2013,
135, 703-709; c) A. R. Genady, N. Janzen, L. Banevicius, M. El-Gamal,
M. E. El-Zaria, J. F. Valliant, J. Med. Chem. 2016, 59, 2660-2673; d) S.
A. Fletcher, P. K. B. Sin, M. Nobles, E. Årstad, A. Tinker, J. R. Baker,
Org. Biomol. Chem. 2015, 13, 9559–9563; e) A. Darwish, M. Blacker, N.
Janzen, S. M. Rathmann, S. Czorny, S. M. Hillier, J. L. Joyal, J. W.
Babich, J. F. Valliant, ACS Med. Chem. Lett. 2012, 3, 313−316.
a) J. Deng, Y.-M. Wu, Q.-Y. Chen, Synthesis, 2005, 16, 2730-2738; b) L.
Li, G. Zhang, A. Zhu, L. Zhang, J. Org. Chem. 2008, 73, 3630-3633; c)
J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B. Sharpless, V. V. Fokin,
Angew. Chem., Int. Ed. 2009, 48, 8018-8021; d) W. S. Brotherton, R. J.
Clark, L. Zhu, J. Org. Chem. 2012, 77, 6443; e) J. García-álvarez, J.
Díez, J. Gimeno, Green Chem. 2010, 12, 2127-2130; f) S. Lal, H.
S. Rzepa, S. Díez-González, ACS Catal. 2014, 4, 2274-2287.
L. Li, Y. Li, R. Li, A. Zhu and G. Zhang, Aust. J. Chem. 2011, 64, 1383–
1389.
Experimental Section
Synthesis of Compound 3a to 3v Azides (0.1 mmol), terminal alkynes
(0.12 mmol), Selectflour (0.12 mmol), NaI (0.12 mmol), TBACl (0.12
mmol), DIPEA (0.12 mmol), and CuI (0.01 mmol) were added in H2O (1
mL) and stirred for 6 h at 50℃ (oil bath) in air. The reaction was
monitored by TLC analysis. After the reaction was completed, the mixture
was extracted with ethyl acetate ( 3×10 mL).The organic layer dried over
Na2SO4. The filtrate was concentrated under reduced pressure. The
residue was purified by column chromatography on silica gel, eluting with
petroleum ether/ethyl acetate to afford the pure compounds.
[3]
[4]
[5]
Synthesis of dual-labeling pentapeptide 3w
Route A: Pentapeptide bearing azide group 2n (2 mg), fluorescent
alkyne 1h (1mg, 1.5 equiv.), Selectflour (2mg, 1.5 equiv), NaI (2 mg, 1.5
equiv), TBACl (1mg, 1.5 equiv), DIPEA (0.5 mg, 1.5 equiv), and CuI (0.1
mg, 0.15 equiv) were added in H2O (150μL) and stirred for 24 h at 37 oC.
The reaction was monitored by analytical RP-HPLC chromatogram in a
linear gradient of 10-85% of CH3CN in water containing 0.1% TFA over
20 min on a C18-bonded silica column. After the reaction was completed,
the solvent was evaporated, and the residue was dissolved in 10%
CH3CN water solution, which was applied to a C18 reversed-phase
column (9.4×250mm). The column was eluted using a linear gradient of
10–85% CH3CN containing 0.1% TFA over 50 min to give 3w (2.3 mg,
81 %) after lyophilization.
[6]
[7]
[8]
[9]
Route B: Pentapeptide 4 (2 mg), azide 2m (7mg, 6 equiv), fluorescent
alkyne 1h (6mg, 6 equiv), Selectflour (8.5 mg, 7 equiv), NaI (3.6 mg, 7
equiv), TBACl (6.7 mg, 7 equiv), DIPEA (3 mg, 7 equiv), and CuI (0.6 mg,
a) F. Amblard, J. H. Cho, R. F. Schinazi, Chem. Rev. 2009, 109, 4207-
4220.
o
0.7 equiv) were added in H2O (150μL) and stirred for 24 h at 37 C. The
A. Podgoršek, M. Zupan, J. Iskra, Angew. Chem. Int. Ed. 2009, 48,
8424-8450.
reaction was monitored by analytical RP-HPLC chromatogram in a linear
gradient of 10-85% of CH3CN in water containing 0.1% TFA over 20 min
This article is protected by copyright. All rights reserved.