Wang et al.
JOCArticle
and hydrogen bond acceptor to recognize metal cations4c,h
and both aliphatic and aromatic diols,4e respectively.
Furthermore, the azacalixaromatics are readily functiona-
lized not only on the aromatic rings4i,j,10,12 but also on the
bridging positions,4d,j allowing the construction of polyfunc-
tionalized host molecules.
chemistry of novel and functional heterocalixaromatics, we
report herein the highly efficient synthesis and selective
bromination of azacalix[4]pyrimidines.
Pyrimidine is a useful ligand in coordination chemistry. It
has also been used recently by Katz11c and by Dehaen12 for
the construction of oxygen- and sulfur-bridged calix[2]arene-
[2]pyrimidines. To enhance the ability of pyrimidine nitrogen
atoms to coordinate metal ions and to form hydrogen bonding
with hydrogen bond donors, however, it is essential to intro-
duce electron-donating groups such as an amino group onto
4- and 6-positions. We therefore envisioned that azacalix-
[4]pyrimidines would provide a new type of polyfunctionalized
macrocyclic host molecules in supramolecular chemistry.
Compared to conventional calixarenes,15 one of the other
salient features of heterocalixaromatics is the incorporation
of various heteroaromatic rings. The combination of brid-
ging heteroatoms and heteroaromatic rings has resulted
indeed in a few useful macrocyclic hosts in supramolecular
chemistry. Due to the conjugative electron-donating effect of
the bridging nitrogen atoms, azacalix[n]pyridines, for in-
stance, are able to strongly and selectively complex with
metal ions4c,h and neutral molecular guests4e including full-
erenes,4a,b,f,g while oxacalix[2]arene[2]triazines provide a
unique electron-deficient cleft to accommodate a halide
anion.16 On the other hand, NH-bridged calix[2]arene-
[2]triazines10a and oxacalix[2]arene[2]pyrazine17 have been
found to undergo, respectively, hydrogen-bond-directed and
silver-coordination-driven molecular self-assembly. As a
continuation of our interest in exploring supramolecular
Results and Discussion
We initially attempted the synthesis of methylazacalix-
[4]pyrimidine 3a from a straightforward cyclic condensa-
tion reaction between 4,6-dichloropyrimidine 1 and 4,6-bis-
(methylamino)pyrimidine 2a (Table S1 in the Supporting
Information). In the presence of sodium hydride as a base,
the reaction of 1 and 2a in a mixture of 1,4-dioxane and
toluene solution proceeded smoothly to give desired
methylazacalix[4]pyrimidine 3a and a mixture of inseparable
oligomers. As summarized in Table 1, a large excess amount
of sodium hydride was necessary to effect the condensation
reaction (entries 1 and 2, Table 1), and use of too many folds
of base, however, did not further improve the chemical yield
of the macrocyclic product (entries 3 and 4, Table 1).
Although the formation of azacalix[4]pyrimidine did not
require reaction in a highly dilute concentration, a substrate
concentration around 0.067 M (2 mmol substrate in 30 mL of
solvent) appeared beneficial (entries 2, 5, and 6, Table 1). A
mixture of 1,4-dioxane and toluene (1:1) as the solvent
worked better than a single organic solvent such as 1,4-
dioxane and toluene (entries 2, 7, and 8, Table 1).
(5) (a) Miyazaki; Kanbara, T.; Yamamoto, T. Tetrahedron Lett. 2002, 43,
7945. (b) Suzuki, Y.; Yanagi, T.; Kanbara, T.; Yamamoto, T. Synlett 2005, 2,
263. (c) Fukushima, W.; Kanbara, T.; Yamamoto, T. Synlett 2005, 19, 2931.
(6) (a) Tsue, H.; Ishibashi, K.; Takahashi, H.; Tamura, R. Org. Lett.
2005, 7, 2165. (b) Ishibashi, K.; Tsue, H.; Tokita, S.; Matsui, K.; Takahashi,
H.; Tamura, R. Org. Lett. 2006, 8, 5991. (c) Ishibashi, K.; Tsue, H.; Sakai, N.;
Tokita, S.; Matsui, K.; Yamauchi, J.; Tamura, R. Chem. Commun. 2008,
2812. (d) Tsue, H.; Ishibashi, K.; Tokita, S.; Takahashi, H.; Matsui, K.;
Tamura, R. Chem.;Eur. J. 2008, 14, 6125. (e) Tsue, H.; Matsui, K.;
Ishibashi, K.; Takahashi, H.; Tokita, S.; Ono, K.; Tamura, R. J. Org. Chem.
2008, 73, 7748.
(7) (a) Vale, M.; Pink, M.; Rajca, S.; Rajca, A. J. Org. Chem. 2008, 73, 27.
(b) Touil, M.; Lachkar, M.; Siri, O. Tetrahedron Lett. 2008, 49, 7250. (c)
Konishi, H.; Hashimoto, S.; Sakakibara, T.; Matsubara, S.; Yasukawa, Y.;
Morikawa, O.; Kobayashi, K. Tetrahedron Lett. 2009, 50, 620.
(8) For a review of oxacalixaromatics, see: Maes, W.; Dehaen, W. Chem.
Soc. Rev. 2008, 37, 2393.
(9) (a) Chambers, R. D.; Hoskin, P. R.; Khalil, A.; Richmond, P.;
Sandford, G.; Yufit, D. S.; Howard, J. A. K. J. Fluorine Chem. 2002, 116,
19. (b) Chambers, R. D.; Hoskin, P. R.; Kenwright, A. R.; Khalil, A.;
Richmond, P.; Sandford, G.; Yufit, D. S.; Howard, J. A. K. Org. Biomol.
Chem. 2003, 2137.
(10) (a) Wang, M.-X.; Yang, H.-B. J. Am. Chem. Soc. 2004, 126, 15412.
(b) Wang, Q.-Q.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. Org. Lett. 2007,
9, 2847. (c) Yang, H.-B.; Wang, D.-X.; Wang, Q.-Q.; Wang, M.-X. J. Org.
Chem. 2007, 72, 3757. (d) Hou, B.-Y.; Wang, D.-X.; Yang, H.-B.; Zheng,
Q.-Y.; Wang, M.-X. J. Org. Chem. 2007, 72, 5218. (e) Hou, B.-Y.; Zheng,
Q.-Y.; Wang, D.-X.; Wang, M.-X. Tetrahedron 2007, 63, 10801. (f) Hou,
B.-Y.; Zheng, Q.-Y.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Chem.
Commun. 2008, 3864.
Under the optimized conditions, macrocyclic condensa-
tion reaction between 1 and other 4,6-bis(amino)pyrimidines
TABLE 1. Synthesis of 3a from a Straightforward Macrocyclic Con-
densation Reaction between 1 and 2a
(11) (a) Katz, J. L.; Feldman, M. B.; Conry, R. R. Org. Lett. 2005, 7, 91.
(b) Katz, J. L.; Selby, K. J.; Conry, R. R. Org. Lett. 2005, 7, 3505. (c) Katz, J.
L.; Geller, B. J.; Conry, R. R. Org. Lett. 2006, 8, 2755. (d) Katz, J. L.; Geller,
B. J.; Foster, P. D. Chem. Commun. 2007, 1026.
(12) (a) Maes, W.; Van Rossom, W.; Van Hecke, K.; Van Meervelt, L.;
Dehaen, W. Org. Lett. 2006, 8, 4161. (b) Van Rossom, W.; Maes, W.;
Kishore, L.; Ovaere, M.; Van Meervelt, L.; Dehaen, W. Org. Lett. 2008, 10,
585. (c) Van Rossom, W.; Ovaere, M.; Van Meervelt, L.; Dehaen, W.; Maes,
W. Org. Lett. 2009, 11, 1681.
(13) (a) Li, X. H.; Upton, T. G.; Gibb, C. L. D.; Gibb, B. C. J. Am. Chem.
Soc. 2003, 125, 650. (b) Hao, E.; Fronczek, F. R.; Vicente, M. G. H. J. Org.
Chem. 2006, 71, 1233. (c) Konishi, H.; Tanaka, K.; Teshima, Y.; Mita, T.;
Morikawa, O.; Kobayashi, K. Tetrahedron Lett. 2006, 47, 4041. (d) Yang, F.;
Yan, L.-W.; Ma, K.-Y.; Yang, L.; Li, J.-H.; Chen, L.-J.; You, J.-S. Eur. J.
Org. Chem. 2006, 1109. (e) Zhang, C.; Chen, C.-F. J. Org. Chem. 2007, 72,
3880.
(14) For a review of thiacalixarenes, see: Morohashi, N.; Narumi, F.; Iki,
N.; Hattori, T.; Miyano, S. Chem. Rev. 2006, 106, 5291.
(15) For a very recent monograph, see: Gutsche C. D. Calixarenes: An
Introduction; The Royal Society of Chemistry: London, 2008.
(16) Wang, D.-X.; Zheng, Q.-Y.; Wang, Q.-Q.; Wang, M.-X. Angew.
Chem., Int. Ed. 2008, 47, 7485.
NaH
(equiv)
1,4-dioxane/
toluene (v/v)
substrate
concn (mM)
entry
3a (%)a
1
2
3
4
5
6
7
8
6.3
8.3
10.4
12.5
8.3
8.3
8.3
8.3
1:1
1:1
1:1
1:1
1:1
1:1
1:0
0:1
66.7
66.7
66.7
66.7
133.4
33.3
66.7
66.7
22
35
33
34
26
27
32
0b
aIsolated yield. bOnly dimer was obtained in 29%.
(17) Ma, M.-L.; Li, X.-Y.; Wen, K. J. Am. Chem. Soc. 2009, 131, 8338.
742 J. Org. Chem. Vol. 75, No. 3, 2010