140
S. Berhe et al. / Bioorg. Med. Chem. 18 (2010) 134–141
4.5. Expression and purification of recombinant human
carbonyl reductase
initial studies onto the quinone containing core. Another geometry
optimization was done with the side-chain intact using Hartree–
Fock 3-21G*. These structures were then imported into GAUSSIAN
0334 and subjected to a geometry optimization and frequency cal-
culation using Hartree–Fock 6-31G*. For each indazole-dione, the
lowest energy structures were analyzed for conformational and
electronic differences and similarities.
Recombinant human carbonyl reductase was expressed in Esch-
erichia coli, BL21 DE3 cells harboring pET-5a-HCBR.26 The cells were
grown in 6 L of LB-broth according to published methods.26 Re-
combinant human liver carbonyl reductase was purified to homo-
geneity following a previously described method.26 Throughout
the preparation, human carbonyl reductase was distinguished
from the bacterial enzyme by sensitivity to rutin inhibition.28 Pur-
ity was confirmed via SDS–PAGE and the resulting protein was
found to have kcat and Km values for menadione and 4-benzoylpyr-
idine consistent with previously reported values for human car-
bonyl reductase.21,29 Enzyme concentration was determined
Acknowledgments
The work described in this paper was supported in part by NIH
NCRR P20-RR16454 (H.A.C. and A.S.), NIH NCI 1 R15 CA102119-01
(H.A.C. and C.L.), Research Corporation Cottrell College Science
Award CC5404 (H.A.C.), Howard University New Faculty Grant
(O.B.) and Grant 2 G12 RR003048 from the RCMI Program, Division
of Research Infrastructure, National Center for Research Resources,
NIH.
spectrophotometrically (e
280 = 0.699 mgꢀ1ml) and protein concen-
trations were determined by the method of Bradford using bovine
serum albumin as the standard.30
4.6. Steady-state kinetics of carbonyl reductase
References and notes
Kinetic measurements were made for the indazole-dione sub-
strates with different substrate concentrations and 50 lM NADPH
1. Young, R. C.; Ozols, R. F.; Myers, C. E. N. Eng. J. Med. 1981, 305, 139–153.
2. Cortes, E. P.; Lutman, G.; Wanka, J.; Wang, J. J.; Pickren, J.; Wallace, J.; Holland, J.
F. Cancer Chemother. Rep. 1975, 6, 215–255.
3. Minow, R. B. R.; Gottleeb, J. Cancer Chemother. Rep. 1975, 6, 195–210.
4. von Hoff, D. D.; Layard, M. W.; Basa, P.; Davis, H. L., Jr.; von Hoff, A. L.;
Rozencweig, M.; Muggia, F. M. Ann. Int. Med. 1979, 91, 710–717.
5. Lipshultz, S. E.; Colan, S. D.; Gelber, R. D.; Perez-Atyde, A. R.; Sallan, S. E.;
Sanders, S. P. N. Eng. J. Med. 1991, 324, 808–815.
6. Horenstein, M. S.; Vander Heide, R. S.; L’Ecuyer, T. J. Mol. Genet. Metab. 2000, 71,
436–444.
7. Schimmel, K. J. M.; Richel, D. J.; van den Brink, R. B. A.; Guchelaar, H.-J. Cancer
Treat. Rev. 2004, 30, 181–191.
in 100 mM potassium phosphate. It was necessary to use up to 1%
DMSO or 2% methanol for several of the carbonyl compounds to
enhance their solubility. In control experiments using the standard
assay described below, the enzyme was unaffected by methanol
concentrations up to 2% and DMSO concentrations up to 1%. Car-
bonyl substrate concentrations were determined from mass or
spectrophotometrically (menadione,
norubicin,
486 = 12,100 Mꢀ1 cmꢀ1). Assays were measured by fol-
lowing NADPH oxidation to NADP+ spectrophotometrically
e
340 = 2500 Mꢀ1 cmꢀ1; dau-
e
8. Wojtacki, J.; Lewicka-Nowak, E.; Lesniewski-Kmak, K. Med. Sci. Monit. 2000, 6,
411–420.
(e
340 = 6220 Mꢀ1 cmꢀ1) as a function of time using a Varian Cary
9. Cusack, B. J.; Gambliel, H.; Musser, B.; Hadjokas, N.; Shadle, S. E.; Charlier, H.;
Olson, R. D. Cancer Chemother. Pharmacol. 2006, 58, 517–526.
10. Olson, R. D.; Mushlin, P. S.. Mechanism of Anthracycline Cardiotoxicity: Are
Metabolites Involved? In Cellular and Molecular Toxicology in In Vitro Toxicology;
CRC Press: Boca Raton, 1990.
11. Olson, R. D.; Mushlin, P. S.; Brenner, D. E.; Fleischer, S.; Cusack, B. J.; Chang, B.
K., ; Robert, R. J., Jr. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 3585–3589.
12. Boucek, R. J., Jr.; Olson, R. D.; Brenner, D. E.; Ogunbunmi, E. M.; Inui, M.;
Fleischer, S. J. Biol. Chem. 1987, 262, 15851–15856.
100 Bio.31 Initial slopes of the resulting progress curves were esti-
mated from fits of the curves to either a line or a parabola, and
these slopes were used to calculate the initial velocities. Steady-
state kinetic data were fit to the Michaelis–Menten equation using
HYPERW.32
4.7. Inhibition of carbonyl reductase
13. Cusack, B. J.; Mushlin, P. S.; Voulelis, L. D.; Li, X.; Boucek, R. J., Jr.; Olson, R. D.
Toxicol. Appl. Pharmocol. 1993, 118, 177–185.
14. Minotti, G.; Cavaliere, A. F.; Mordente, A.; Rossi, M.; Schiavello, R.; Zamparelli,
R.; Possati, G. J. Clin. Invest. 1995, 95, 1595–1605.
15. Minotti, G.; Recalcati, S.; Mordente, A.; Liberi, G.; Calafiore, A. M.; Mancuso, C.;
Preziosi, P.; Cairo, G. FASEB J. 1998, 12, 541–551.
16. Minotti, G.; Cairo, G.; Monti, E. FASEB J. 1999, 13, 199–211.
17. Olson, R. D.; Li, X.; Palade, P.; Shadle, S. E.; Mushlin, P. S.; Gambliel, H. A.; Fill,
M., ; Boucek, R. J., Jr.; Cusack, B. J. Toxicol. Appl. Pharmacol. 2000, 169, 168–176.
18. Forrest, G. L.; Gonzalez, B.; Tseng, W.; Li, X.; Mann, J. Cancer Res. 2000, 60,
5158–5164.
19. Olson, L. E.; Bedja, D.; Alvey, S. J.; Cardounel, A. J.; Gabrielson, K. L.; Reeves, R. H.
Cancer Res. 2003, 63, 6602–6606.
20. Ax, W.; Soldan, M.; Koch, L.; Maser, E. Biochem. Pharmacol. 2000, 59, 293–300.
21. Wermuth, B. J. Biol. Chem. 1981, 256, 1206–1213.
22. Iwata, N.; Inazu, N.; Satoh, T. J. Biochem. 1989, 105, 556–564.
23. Tanaka, M.; Bateman, R.; Rauh, D.; Vaisberg, E.; Ramachandani, S.; Zhang, C.;
Hansen, K. C.; Burlingame, A. L.; Trautman, J. K.; Shokat, K. M.; Adams, C. L. PLoS
Biol. 2005, 3, 764–776.
24. Bakare, O.; Zalkow, L. H.; Burgess, E. M. Synth. Commun. 1997, 27, 1569–
1576.
Inhibitors were evaluated by determining the IC50 values in the
following standard assay. Enzyme was added to different concen-
trations of inhibitor, 250 lM menadione, and 50 lM NADPH in
100 mM potassium phosphate, pH 7.0 at 25 °C. IC50 values were
extrapolated from the plot of % activity remaining versus inhibitor
concentration. For more complete inhibition studies, concentra-
tions of indazole-diones 11 and 12 were varied against varied men-
adione or NADPH concentrations. For experiments with varied
menadione concentrations the NADPH concentrations were fixed
at either 10
NADPH concentrations, the menadione concentrations were held
constant at either 50 M or 250 M. The resulting data were fit
lM, 50 lM, or 300 lM. For experiments with varied
l
l
to competitive, uncompetitive, and noncompetitive inhibition
equations using COMP, UNCOMP, and NONCOMP, respectively.32
25. Barakat, M. Z.; Shehab, S. K.; El-Sadr, M. M. J. Chem. Soc. 1958, 901–902.
26. Slupe, A.; Williams, B.; Larson, C.; Primbs, T.; Lee, L. M.; Breusch, A. J.;
Bjorklund, C.; Warner, D. L.; Peloquin, J.; Shadle, S. E.; Gambliel, H. A.; Cusack,
B. J.; Olson, R. D.; Charlier, H. A., Jr. Cardiovasc. Toxicol. 2005, 5, 365–376.
27. Tanaka, M.; Zhang, C.; Shokat, K. M.; Burlingame, A. L.; Hansen, K.; Bateman, R.
L.; Dimagno, S. G. Pyrazolo Pyrimidine Derivatives and Methods of Use Thereof.
In WHO: PCT, 2005.
28. Bohren, K. M.; Wermuth, B.; Harrison, D.; Dagmar, R.; Petsko, G. A.; Gabbay, K.
H. J. Mol. Biol. 1994, 244, 659–664.
29. Bohren, K. M.; von Wartburg, J. P.; Wermuth, B. Biochem. J. 1987, 244, 165–171.
30. Bradford, M. M. Anal. Biochem. 1976, 72, 248–254.
4.8. Computational chemistry for select indazole-diones
Indazole-diones 11, 12, 15, 17, 22, and 23 were subjected to a
conformation search using Hartree–Fock 3-21G* with SPARTAN
04.33 The two lowest energy conformers for each compound were
then geometry optimized in SPARTAN 04 using Hartree–Fock 6-31G*.
The remaining structures were subjected to a conformer search
excluding the carbamate side-chain using Hartree–Fock 3-21G*
with SPARTAN 04. For each indazole-dione, the lowest energy con-
formers within a calculated 2 kcal/mol range of each other were
carried forward by appending the carbamate side-chain from the
31. Wermuth, B.. Aldo–Keto Reductases. In Enzymology of Carbonyl Metabolism:
Aldehyde Dehydrogenase, Aldo/Keto Reductase, and Alcohol Dehydrogenase; Alan
R. Liss: New York, 1985.
32. Cleland, W. W. Methods Enzymol. 1979, 63, 103–138.